Parallel Function Programming
Final Project Word-Search-2

Team:
e Sean Zhang (srz2116)
e Keith Lo (kl3695)

e Ardrian Wong (aaw2179)

NP WN R

Table of Contents

Problem statement

Sequential Algorithm

Proposed Methods of Parallelism
Technical Challenges

Algorithm Evaluation

Hardware Details

Benchmark Results

Conclusion & Future Work

Problem Statement

Given an m x n board of characters and a list of strings words, return all
words on the board.

-~
q

—
<

Input: board = [["0","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","I","v"]], words =

['oath","pea","eat","rain"]
Output: ["eat","oath"]

Sequential Algorithm

Insert the target words in a Trie for efficient search
during DFS.

Initiate DFS for each cell (searchFromcCell) in the
grid (this happens in findWords)

Check if the character in the current cell matches
the character in the trie.

a. If true, mark the current cell as visited and
continue DFS all directions. Add any words
found during DFS to the results

b. If false, don’t continue DFS from the current
cell

Proposed Methods of Parallelism

e ParallelWords: Parallelize the search for each target
word

e ParallelDepth: Parallelize recursive DFS calls up to a
configurable depth

e ParallelSubgrids: Divide the input grid into N2
subgrids and parallelize DFS from each of them

Technical Challenges

e Data Generation:
o Leetcode test cases insufficient for testing
o No online word search generator that generates snaking
target words

e Lazy Evaluation with par:
o List of results was full of thunks. Resulted in timing in
problems timing the algorithm.

Algorithm Evaluation

We benchmark performance on the following the
following three test cases:

e 100x100 grid with 10 target words
e 500x500 grid with 20 target words
e 1000x1000 grid with 30 target words

We first parse the input from disk and then time the execution of the algorithm itself. This
approach ensures that we exclude I/O time from our benchmarks.

Note: Target word length ranges from 8-15 characters.

Hardware

All testing was conducted on a 2022 Macbook Air:

[(base) MacBook-Air-691:PFP sean$ sysctl -a machdep.cpu
machdep.cpu.cores per package: 8

machdep.cpu.core count: 8
machdep.cpu.logical per package: 8
machdep.cpu.thread count: 8

machdep.cpu.brand string: Apple M2

Overall Results

Runtime for Different Algorithms Searching a 1000x1000 Board

150 |- .

= 100 .
(]
£
&=

50 J |

0 [[

Sequential ParallelWords ParallelDepth ~ ParallelSubgrids

All parallel algorithms were run with 8 threads. ParallelDepth has depth 8 and ParallelSubgrids has 196 subgrids.

Sequential Results

Board Size
100x100 500x500 1000x1000

Time (s) | 0.02597 5491277 65.772943

Table 1: Sequential algorithm runtimes.

10

ParallelWords Results

Threads | Board Size
‘ 100x100 500x500 1000x1000

0.068571 25.964812 842.595844
0.042393 14.382055 460.157849
0.032634 11.135458 305.842003
0.025253 8.376221 257.679208
0.025845 7.921799 205.091986
0.020172 7.079879 192.660891
0.019657 6.866078 163.534461
0.021034 6.735405 162.122001

O JO Tt Wi -

Table 2: ParallelWords runtimes (in seconds).

ParallelWords Results

ParallelWords Speedup vs. Thread Count

T I I | | | |

1 | | 1 I L 1

1 2 3 4 5 6 7 8
Thread Count

—=— 100x100 500x500 —=— 1000x1000

Figure 1: Speedup for varying thread counts across different board sizes.

12

ParallelWords Results

~ - = '1°° ' | Total |Converted |Overflowed |Dud |GCed |Fizzled
. HECO 0 4 0 o 0 0
) N ., HEC1 30 1 0 0 0 0
. HEC2 0 3 0 0 o 1
. HEC3 0 4 0 0 0 0
- HEC4 0 4 0 0 o 0
- HEC5 0 4 0 0 o 0
o HEC6 0 4 0 0 0 0
- HEC7 0 5 0 0 0 0

ParallelWords threadscope graph and spark stats for 1000x1000 board, -N8.

13

ParallelDepth Results

Threads |

Depth

1

2

3

4

5

6

7

8

0O O Ui W N+

11.70577
11.28168
11.907646
11.485883
11.684131
11.37276
11.954613
11.671538

12.113667
12.60596
12.11129

11.072132
11.83232

12.003249

11.941797

11.944176

13.801015
11.886404
12.81159
11.509928
11.658778
11.371989
12.601917
11.662381

12.34687
12.59457
11.322576
11.482786
11.768344
12.191675
12.127493
11.772531

11.565189
11.249191
12.4556
11.998397
12.078482
12.297596
11.678604
11.695728

11.279337
12.183987
11.543598
11.600105
11.875231
11.051718
11.495271
11.620753

11.866786
11.441741
12.298782
11.861788
12.134167
11.889646
11.818165
13.652866

11.241193
11.525345
11.504465
11.005588
11.808079
11.54167

11.987016
12.189594

Table 5: ParallelDepth runtimes (in seconds) for a 1000x1000 board.

14

ParallelDepth Results

Paralle]Depth Speedup vs. Depth

T I

1.1 T T

0.9

Speedup

0.8

| 4

0.7 — 1
3 4 5 6 7 8
Depth

—=—100x100 500x500 —e— 1000x1000

Figure 2: Speedup for varying depth across different board sizes, -N8.

ParallelDepth Speedup vs. Thread Count

I | T |
2.5 -
2 i
&
s
8
2,
n
1.5} 2
il = N
| Il 1 | Il | 1 1
1 2 3 4 5 6 7 8
Thread Count
—=—100x100 500x500 —e— 1000x1000
Figure 3: Speedup for varying thread count across different board sizes, depth 8.

15

ParallelDepth Results

HEC |Total Converted |Overflowed |Dud | GCed |Fizzled

e "A547676 24752 1053762 0 698930 2303288

. SO0 000000 0O 00 OO A R A - HEC 0 6272 3558 0 0 3 133695
S0 000 0000000 OO 0D 000 O A O L o HEC 1 7736 3878 0 0 4 136728
- o O O TR T HEC 2 4499552 15 1053762 0 698683 118
. g g g a aa e u a e a HEC 3 7296 3901 0 0 34 578039
g g HEC 4 7232 3641 0 0 94 506654
e O 0000000000000 OO HEC S 8184 4056 0 0 55 605699
IO 0 R0 0000000 OO HEC6 5104 2490 0 0 ol 1713990
HEC 7 6300 3213 0 0 56 170365

S 0 0 000000000010 00000 O
ParallelDepth threadscope graph and spark stats for 1000x1000 board, depth 8, -N8.

16

ParallelSubgrids Results

Threads |

Subgrids

1

4

16

36

64

100

144

196

256

1000000

OO Ot W -

65.801883
64.714528
65.622570
67.589009
66.191874
66.546687
66.201424
67.099902

65.945074
37.785980
34.679536
21.303343
21.598264
21.820648
22.373584
22.044958

66.799887
36.057934
27.001564
20.879299
18.539671
15.904608
15.098906
12.315757

66.388034
35.417008
25.326437
19.191283
16.277188
14.798572
13.849142
12.435074

67.485956
35.813678
25.149757
18.958903
16.005820
14.075356
12.851644
11.946892

67.299456
35.300202
24.586220
18.670745
16.318601
14.538098
13.162786
11.677746

67.051436
35.437499
24.508003
18.48981
16.025915
14.106605
12.713559
11.468487

67.883795
35.487171
24.854055
18.772108
15.863053
13.942253
12.491494
10.809685

67.056246
35.627685
25.193567
18.509092
15.930072
13.983451
12.521412
11.501718

310.392841
257.808374
240.548454
237.812547
231.578546
242.619650
245.427277
244.793032

Table 8: ParallelSubgrids runtimes (in seconds) for a 1000x1000 board.

17

ParallelSubgrids Results

ParallelSubgrids Speedup vs. Number of Subgrids ParallelSubgrids Speedup vs. Thread Count
TT | I | | T T | I T
6 = 6 g
5 E 51 i
o
§ 4t | g 4r i
] 8
8 2,
2 n
o 3
© 3 N
1
2+ a
2 |
1+ |
1 5 = | | | 1 | | | 1 |
| | | | | 1 2 3 4 5 6 7 8
11 | |
416 36 64 100 144 196 256 Thread Count
Number of Subgrids —=— 100100~ 500x500 —=— 1000x1000
100100 bbbl 10001000 Figure 5: Speedup for varying thread counts for different board sizes, each split into 196 subgrids.

Figure 4: Speedup for varying numbers of subgrids for different board sizes, -N8.
18

ParallelSubgrids Results

0 0 1

| HECO 0 25 0 o 0 o0

O R S ey (HEC 1196 22 0 o 0 0
HEC2 0 25 0 0 0 1

 HEC3 0 24 0 o o0 0

HEC4 0 25 0 0 0 0

O S ST O OB o o o o
S D B " & 8 B
B A I (= 5 o o 0 & B B

O G RO T M |
ParallelSubgrids threadscope graph and spark stats for 1000x1000 board, 196 subgrids, -N8.
19

Conclusion

The Word-Search Sequential algorithm was a good
candidate for parallelization.

Paralle]lWords is a poor method parallelism
ParallelDepth and ParallelSubgrids show significant
performance increases

20

Future Work

Test performance on machine with high hardware
thread count

Tune test cases to get more granular performance
results of our algorithms given our current

hardware setup
Investigate if there are other algorithms that could

be used for more efficient parallelism

21

