
Othello
Noam Hirschorn (nyh2111) & Dan Ivanovich (dmi2115)

Background
Othello, a board game derived from Reversi, is played on an 8x8 grid with a fixed

starting layout. Throughout the game, players take turns placing disks of their side’s color onto
empty spaces. After a player places a disk, any disks of the opponent's color that lie between
the one that was just placed and another one of the same color are flipped. At the end of the
game (when the board is filled), whichever player has the majority of disks showing their color
wins the game. The game can end in a tie if both players have the same number of disks when
there are no remaining moves to be made.

Minimax (AKA minmax) is a back-tracking decision-making algorithm that is often used
to determine the optimal move in turn-based games (eg. chess, checkers, tic-tac-toe, or othello).
It assumes that the opponent will play optimally and recursively evaluates all future states of the
board, then selects the move that eventually leads to the most favorable outcome. By
developing an algorithm to assign a score to each board state that reflects which player holds
the most advantageous position, one can use minimax to create an intelligent opponent that
optimally plays towards a winning result. While minimax is a great framework for
decision-making, it is limited by the exponential growth of possible game states as search depth
increases, making deeper searches computationally expensive, particularly for games like
Othello with high branching factors. To address this, practical implementations often limit the
search depth and rely on heuristic evaluation functions to approximate the desirability of
non-terminal board states. In the case of Othello, an example simple heuristic is the number of
stones of the chosen color in a given state to estimate desirability.

Development

The first task we had was to adapt the codebase. Much of it involved setting up a GUI to
allow for human vs AI play. We extracted the parts needed to actually make a move, and just
had it load a given game board, perform a search, and return a move. This allowed for much
more accurate measuring of the minmax algorithm for a single search tree. Additionally, we
added a simple alpha beta functionality to the search.

Our first attempt at parallelization had issues. Specifically, the threads would be
sequentially dependent on each other, which was due to incorrect handling of alpha beta
parameters, so 2 threads would not run simultaneously as they would wait for alpha beta values
to be updated. Once we identified this issue with threadscope, we created two models of
parallelization. One would simply try to parallelize the top few layers of the search tree until a
given depth, and have each thread run in isolation below it (known as the top-down method).
The other involved intentionally causing threads to only parallelize at a lower depth where each
node there would have all its children expanded in parallel. The threads would then run, and

when all complete, update the alpha beta value, and move on to the next node in that level
(known as the side-side method). This algorithm was meant to allow for additional use of
sequential moves in the top few levels. We found that the first method merged into the second,
since having multiple levels of parallelization would lead to excess fizzling as the parallelized
upper layers would attempt to redo the work of parallelized lower layers (so this ‘top-down’ case
simply became a specialized ‘side-side’ case with the ‘parallelDepth’, the level nodes would be
parallelized from, set to the top layer). The spirit of the top-down theory would involve using BFS
to get to a desired parallelDepth, and then have each node be sparked and run in parallel.
However, BFS goes against the way alpha beta works, so this line of thought did not end up
bearing fruit. An additional tactic used was ‘rdeepseq’ and ‘!’ to force evaluations before values
were returned. This prevented thunks from building up in the parallelization step before needing
to actually be evaluated when sequentially using the values to find the answer.

Another method attempted was to try to explicitly call numCapabilities to assign work
based on the number of threads. However, this did not appear to help performance. Finally,
chunks were used to try to make sure each thread had enough work to do, particularly when
parallelDepth was set to lower levels of the search tree. Using chunksOf were both tried, but
again had similar performance. At this point, there was some improvement from 1 thread to 2,
but not much afterwards. In hindsight, while chunking may be helpful for unbalanced search
trees, since Othello tends to be balanced, it merely adds to overhead.

An attempt was made to not force threads to wait for each other; with parMap, each
thread must finish the sparks of the node they were expanding before the code can move on to
the next node at parallelDepth to expand. Instead, the goal was to have threads allowed to
immediately continue to the next node which would need expansion with the alpha beta values
currently calculated. However, this would require thread communication as threads would need
to update alpha beta values independently, and generally need more communication to allow
them to work so independently. Moreover, it would be difficult to stop a thread once it started
working on the next node if that ended up not needing to be expanded. Ultimately, this avenue
was dropped as the code required was getting convoluted and appeared likely to degrade
performance with all of the synchronization. Indeed, an analysis of threadscope showed that
very few cycles were missed from a faster thread waiting for a slower one since the search tree
is fairly balanced.

A small breakthrough was made with the use of parBuffer, as well as the basic map function.
This allowed for additional balancing of tasks in case the search tree can be unbalanced or the
number of threads is not equal to the number of sparks to be created at that node.At first, a
fixed number was used to determine the buffer size, but it then was changed to be a function of
the number of threads. These methods generally saw an increase in cost from 1 thread to 2 due
to the overhead of parallelization and setting up the buffer (1 thread didn’t involve actually
working with sparks/they all fizzled anyways, but with 2, all of the overhead existed of the buffer
and parallelization without much payoff). However, this code was then able to have better
performance when the number of threads increased later.

A final tactic attempted was to parallelize moves by splitting them into subchunks using
parListChunk. This method did not end up panning out (in general, manual chunking did not
appear to have much impact), but this was not immediately clear. A user error was made when
testing this functionality, as a “basic” version of parallelization was still present in the code
(which served as a jumping off point before trying different techniques). The function call in the
minimax function for the code about parallelizing evaluation was accidentally never updated, so
tests purportedly using parListChunk were actually using a fairly basic method merely with
parMap. Results seemed to be promising, so there was some tinkering with the exact nature of
parListChunk which appeared to have some minor impacts (although any variance was actually
due to noise, of which there is a considerable amount). This error was only discovered when
preparing for the report, so although the function call itself was corrected (which revealed that
the parListChunk function itself was not helpful), there was no time for alternative tries.
Nevertheless, even the basic parMap code did produce statistically significant results, with
decreases until N=4-6. In general, the two clear best performing approaches were to use
parMap or parBuffer with a regular map. In the latter case, the specific buffer size used was set
to 2 times the number of threads in order to ensure the buffer would be big enough, without
overly wasting space by making it too large.

As a final note- turning off alpha beta pruning did not appear to greatly increase the relative
performance as swept from 1 to n threads. This suggests that it might be some other factor
(Amdahl’s law, sequential parts of the source, etc) which is preventing full use of the
parallelization rather than the costs of ignoring alpha beta at the level when parallelizing. The
results from both the parMap and parBuffer versions can be reversed to imply only about 25% of
the code was parallelizable (slightly higher in the latter case), a trend consistent across thread
numbers and depths.

E.g., for parMap, when N=4, S = .798(runtime N=1)/.637(runtimeN=4) = 1.252, P = 0.267

Nevertheless, the threadscope graph (below) would appear to indicate that all threads do
tend to be active in parallel almost all of the time, with about 90% of sparks being converted.
(Also worth noting is the fact that while it does appear there is some dead time as threads wait
for each to finish, it does not appear to be a large amount/a driving cause). There is some
amount of sequential setup which may be to blame (for example, loading the game file and

printing results), but if this were the case, as the minimax tree was expanded the sequential
effect would dissipate. Instead, there is likely some feature of the premade code which is
causing the effects of parallelization to be muted (perhaps in the evaluation at the bottom layer
of the graph, although that should just be done using the board in active memory).

Threadscope graph with depth = 6, parallelDepth =5, threads = 4

Performance
Throughout our many different approaches, we examined the performance while

iterating over one of parallel depth, depth, and the number of threads given, and holding all else
constant. Ultimately, we only discovered meaningful correlations between performance and the
number of threads used by the program, with results remaining constant across other sampled
parameters. We found that our parBuffer-based Parallelization (side_side_7.hs) and our
parMap-based Parallelization (side_side_9.hs) proved to be the most consistent high
performers. A factor we sampled over included varying the different starting states of the board,
with some having less moves and others having more possible moves (and therefore a larger
search tree), and found that the parBuffer-based Parallelization seemed to beat parMap when it
came to performance on smaller search trees, and parMap performed better on larger search
trees. Depending on the starting state of the board though, both methods would sometimes see
that running with 2 threads would result in a slightly longer runtime than 1 thread, before
continuing to improve with each added thread as normal—this could be due to the overhead of
initializing parallel threads outweighing the computational savings on smaller search trees,
where the workload is insufficient to fully utilize multiple threads effectively. In general, when
given at least 3 threads, both of these approaches are able to non-negligibly output the best
performance of the original code:

All data collected while running at depth = 5, parallelDepth =4, starting board = custom_game_2

While these performance gains over the original code are significant, the intention behind both
the parMap and parBuffer approaches is clear when you compare their performance at each
thread count against its single-threaded execution time: When given at least 3 threads, both of
these approaches are able to non-negligibly output the best performance of the original code.

All data collected while running at depth = 5, parallelDepth =4, starting board = custom_game_2

There is a clear relationship between the number of threads used and the performance gains
seen, with significant performance improvements seen at each increment. One could say that
the parBuffer-based approach “starts slower,” then more rapidly sees improvements in
performance as more threads are used. The parMap-based parallelization, on the other hand,
shows a closer adherence to a linear relationship between thread count and improvement. As is
demonstrated by the graphs below, the parBuffer allows for a better queue for sparks/work to
build up in, so there is less downtime, although both do a fairly good job at keeping threads
active. By creating a solid relationship between thread count and performance gains, both of
these approaches achieved our goal of demonstrably parallelizing the original algorithm, while
also meaningfully outperforming the original code. Each of these methods also resulted in a
fairly well-balanced load, with the work being distributed well:

Threadscope graph for the parMap-based parallelization with 4 threads

Threadscope graph for the parBuffer-based parallelization with 4 threads

It’s also interesting to see the comparative successes and failures of our many parallelization
attempts, and our progression towards our best results,on the same graph. There is a clear
common drop when parallelization must be set up at n=2, but then a recovery to various
extents. The key difference between with our better performing versions is this lack of initial
drop. The visualization does provide additional context for the aforementioned drop of parBuffer
(albeit to a far lesser extent than other versions), making parMap appear unique for not suffering

this drop.

Conclusion
Our attempts to parallelize the minimax algorithm for the Othello player were eventually able to
demonstrate clear performance improvements in both parMap-based and parBuffer-based
approaches. While each of these methods has its strengths—parMap showing a more
consistent, linear scaling with thread count and parBuffer performing better with higher thread
counts—their combined results underscore the potential for meaningful parallelization. Despite
there being inherently sequential components of the original code, both approaches achieved
measurable gains in efficiency, successfully balancing workload across threads and
outperforming the original implementation.

References
● Initial codebase: https://arttuys.fi/coding/2022/05/othello-haskell/

https://arttuys.fi/coding/2022/05/othello-haskell/

Folder othello

17 printable files

(file list disabled)

othello/README.md

Othello

COMS 4995 Parallel Functional Programming Final Project

Noam Hirschorn (nyh2111) & Dan Ivanovich (dmi2115)

Our experiments in parallelizing the performance of an Othello minmax agent.

Adapted from this codebase.

Building

This project uses cabal. To compile the code, simply run cabal build from the

root directory (. in the file listing)

By default, this will build side_side9.hs, the parMap-based Parallelization.

To build another file, update the following lin in hello-othello.cabal:

executable othello

 main-is: side_side_9.hs <-- Change this file name

and then run cabal build again.

Running

After running cabal build, run using cabal run othello -- <how deep search tree should

go> <what depth to start parallization at> <gameboard file> +RTS -N<number of threads> -s.

Example:

$ cabal build

Resolving dependencies...

<Output Truncated For Brevity>

$ cabal run othello -- 5 4 custom_game_2.txt +RTS -N8 -s

Using minimax depth: 5

Parallelizing at depth: 4

Next move: (5,2)

<Output Truncated For Brevity>

Some suggested test case parameters:

cabal run othello -- 5 4 custom_game_2.txt +RTS -N3 -s

cabal run othello -- 5 4 custom_game_2.txt +RTS -N6 -s

cabal run othello -- 6 5 custom_game_2.txt +RTS -N3 -s

cabal run othello -- 6 5 custom_game_2.txt +RTS -N6 -s

File Listing

.

├── app

│ ├── Main_side_side.hs

│ ├── Main_top_down.hs

│ ├── side_side_3.hs

│ ├── side_side_4.hs

│ ├── side_side_5.hs

│ ├── side_side_6.hs

│ ├── side_side_7.hs # One of our two best performers - parBuffer-based Parallelization

│ ├── side_side_8.hs

│ └── side_side_9.hs # One of our two best performers - parMap-based Parallelization

├── benchmark_performance.py # Performance benchmarking script, can run with --help for info

├── cabal.project

├── custom_game_1.txt # A starting board with only a few possible moves

├── custom_game_2.txt # A starting board with far more possible moves

├── haskell-othello.cabal # Adjust to pick which of the files in /app to build & run

├── README.md # This file

└── src

 └── Othello

 ├── backup_Gamelog.hs

 └── GameLogic.hs

othello/app/Main_side_side.hs

1 {-# LANGUAGE BangPatterns #-}

2

3 import System.Environment (getArgs)

4 import System.IO (readFile)

5 import Data.Array (array, listArray, assocs)

6 import Data.Foldable (maximumBy)

7 import Data.Ord (comparing)

8 import Control.Parallel.Strategies (parMap, rpar, rseq, using, parList, rdeepseq)

9 import Othello.GameLogic (

10 GameSetup(..), Player(..), initialGameState, Board(..), DiscState(..),

11 movesForPlayer, applyMove, Coordinate, opposingPlayer

12)

13

14 -- Parse a custom board state from a string

15 parseCustomBoard :: String -> Int -> Board

16 parseCustomBoard input dim = Board {

17 grid = listArray ((0, 0), (dim-1, dim-1)) discStates,

18 boardDim = dim

19 }

20 where

21 rows = lines input

22 discStates = concatMap parseRow rows

23 parseRow row = map parseDiscState (words row)

24 parseDiscState "E" = Empty

25 parseDiscState "R" = Placed Red

26 parseDiscState "B" = Placed Blue

27 parseDiscState _ = error "Invalid disc state in custom board. Use 'E', 'R', or

'B'."

28

29 -- Define a simple entry point for the program

30 main :: IO ()

31 main = do

32 -- Get command-line arguments

33 args <- getArgs

34

35 -- Parse depth arguments

36 let (depth, parallelDepth, inputFile) = case args of

37 (d:p:file:_) -> (read d, read p, Just file)

38 (d:p:_) -> (read d, read p, Nothing)

39 _ -> error "Usage: <depth> <parallelDepth> [gameboard file]"

40

41 -- Load the custom board or use the default initial game state

42 gameSetup <- case inputFile of

43 Just file -> do

44 content <- readFile file

45 let customBoard = parseCustomBoard content 8 -- Assume an 8x8 board for

simplicity

46 return GameSetup {

47 board = customBoard,

48 aiPlays = [Red, Blue],

49 searchDepth = depth

50 }

51 Nothing -> return (initialGameState 8 [Red, Blue] depth)

52

53 putStrLn $ "Using minimax depth: " ++ show depth

54 putStrLn $ "Parallelizing at depth: " ++ show parallelDepth

55

56 let currentPlayer = Red

57

58 let moves = getAIMove gameSetup currentPlayer depth parallelDepth

59 if null moves

60 then putStrLn "No valid moves available."

61 else do

62 let selectedMove = head moves

63 let updatedBoard = applyMove (board gameSetup) currentPlayer [selectedMove]

64 putStrLn $ "Next move: " ++ show selectedMove

65 putStrLn "Updated board state:"

66 print updatedBoard

67

68 -- Define a custom AI move function using alpha-beta pruning

69 getAIMove :: GameSetup -> Player -> Int -> Int -> [Coordinate]

70 getAIMove setup player depth parallelDepth

71 | null possibleMoves = [] -- No moves available

72 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

73 where

74 possibleMoves = movesForPlayer (board setup) player

75

76 evaluatedMoves =

77 if depth >= parallelDepth

78 then parallelEvaluate possibleMoves

79 else sequentialEvaluate possibleMoves

80

81 sequentialEvaluate moves =

82 [(move, minimax (applyMove (board setup) player move) (opposingPlayer player)

(depth - 1) minBound maxBound)

83 | move <- moves

84]

85

86 parallelEvaluate moves =

87 let groupedMoves = groupByThread possibleMoves (length moves)

88 evalGroup group =

89 [(move, minimax (applyMove (board setup) player move) (opposingPlayer

player) (depth - 1) minBound maxBound)

90 | (move, _) <- group

91]

92 in concat $ parMap rdeepseq evalGroup groupedMoves

93

94 groupByThread moves numThreads =

95 [[(move, idx) | (move, idx) <- zip moves [0..], idx `mod` numThreads ==

threadIdx]

96 | threadIdx <- [0..numThreads - 1]

97]

98

99

100 -- Minimax algorithm with alpha-beta pruning

101 minimax :: Board -> Player -> Int -> Int -> Int -> Int

102 minimax board player depth alpha beta

103 | depth == 0 || null possibleMoves = evaluateBoard board player --base case

104 | player == maximizingPlayer = maximize alpha beta possibleMoves

105 | otherwise = minimize alpha beta possibleMoves

106 where

107 possibleMoves = movesForPlayer board player

108 maximizingPlayer = Red

109

110 maximize :: Int -> Int -> [[Coordinate]] -> Int

111 maximize a b [] = a

112 maximize a b (move:moves)

113 | a' >= b = a'

114 | otherwise = maximize a' b moves

115 where

116 a' = max a (minimax (applyMove board player move) (opposingPlayer player)

(depth - 1) a b)

117

118 minimize :: Int -> Int -> [[Coordinate]] -> Int

119 minimize a b [] = b

120 minimize a b (move:moves)

121 | a >= b' = b'

122 | otherwise = minimize a b' moves

123 where

124 b' = min b (minimax (applyMove board player move) (opposingPlayer player)

(depth - 1) a b)

125

126 -- Board evaluation

127 evaluateBoard :: Board -> Player -> Int

128 evaluateBoard board player = scoreForPlayer - scoreForOpponent

129 where

130 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

131 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

132

133

134

othello/app/Main_top_down.hs

1 {-# LANGUAGE BangPatterns #-}

2

3 import System.Environment (getArgs)

4 import System.IO (readFile)

5 import Data.Array (array, listArray, assocs)

6 import Data.Foldable (maximumBy)

7 import Data.Ord (comparing)

8 import Control.Parallel.Strategies (parMap, rpar, rseq, using, parList, rdeepseq)

9 import Othello.GameLogic (

10 GameSetup(..), Player(..), initialGameState, Board(..), DiscState(..),

11 movesForPlayer, applyMove, Coordinate, opposingPlayer

12)

13

14 -- Parse a custom board state from a string

15 parseCustomBoard :: String -> Int -> Board

16 parseCustomBoard input dim = Board {

17 grid = listArray ((0, 0), (dim-1, dim-1)) discStates,

18 boardDim = dim

19 }

20 where

21 rows = lines input

22 discStates = concatMap parseRow rows

23 parseRow row = map parseDiscState (words row)

24 parseDiscState "E" = Empty

25 parseDiscState "R" = Placed Red

26 parseDiscState "B" = Placed Blue

27 parseDiscState _ = error "Invalid disc state in custom board. Use 'E', 'R', or

'B'."

28

29 -- Define a simple entry point for the program

30 main :: IO ()

31 main = do

32 -- Get command-line arguments

33 args <- getArgs

34

35 -- Parse depth arguments

36 let (depth, parallelDepth, inputFile) = case args of

37 (d:p:file:_) -> (read d, read p, Just file)

38 (d:p:_) -> (read d, read p, Nothing)

39 _ -> error "Usage: <depth> <parallelDepth> [gameboard file]"

40

41 -- Load the custom board or use the default initial game state

42 gameSetup <- case inputFile of

43 Just file -> do

44 content <- readFile file

45 let customBoard = parseCustomBoard content 8 -- Assume an 8x8 board for

simplicity

46 return GameSetup {

47 board = customBoard,

48 aiPlays = [Red, Blue],

49 searchDepth = depth

50 }

51 Nothing -> return (initialGameState 8 [Red, Blue] depth)

52

53 putStrLn $ "Using minimax depth: " ++ show depth

54 putStrLn $ "Parallelizing at depth: " ++ show parallelDepth

55

56 let currentPlayer = Red

57 let moves = getAIMove gameSetup currentPlayer depth parallelDepth

58 if null moves

59 then putStrLn "No valid moves available."

60 else do

61 let selectedMove = head moves

62 let updatedBoard = applyMove (board gameSetup) currentPlayer [selectedMove]

63 putStrLn $ "Next move: " ++ show selectedMove

64 putStrLn "Updated board state:"

65 print updatedBoard

66

67 -- Define a custom AI move function using alpha-beta pruning

68 getAIMove :: GameSetup -> Player -> Int -> Int -> [Coordinate]

69 getAIMove setup player depth parallelDepth

70 | null possibleMoves = [] -- No moves available

71 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

72 where

73 possibleMoves = movesForPlayer (board setup) player

74

75 evaluatedMoves =

76 if depth >= parallelDepth

77 then parallelEvaluate possibleMoves

78 else sequentialEvaluate possibleMoves

79

80 sequentialEvaluate moves =

81 [(move, minimax (applyMove (board setup) player move) (opposingPlayer player)

(depth - 1) minBound maxBound)

82 | move <- moves]

83

84 parallelEvaluate moves =

85 let eval move =

86 (move, minimax (applyMove (board setup) player move) (opposingPlayer

player) (depth - 1) minBound maxBound)

87 in parMap rdeepseq eval moves

88

89 -- Minimax algorithm with alpha-beta pruning

90 minimax :: Board -> Player -> Int -> Int -> Int -> Int

91 minimax board player depth alpha beta

92 | depth == 0 || null possibleMoves = evaluateBoard board player --Base case

93 | player == maximizingPlayer = maximize alpha beta possibleMoves

94 | otherwise = minimize alpha beta possibleMoves

95 where

96 possibleMoves = movesForPlayer board player

97 maximizingPlayer = Red

98

99 maximize :: Int -> Int -> [[Coordinate]] -> Int

100 maximize a b [] = a

101 maximize a b (move:moves)

102 | a' >= b = a'

103 | otherwise = maximize a' b moves

104 where

105 a' = max a (minimax (applyMove board player move) (opposingPlayer player)

(depth - 1) a b)

106

107 minimize :: Int -> Int -> [[Coordinate]] -> Int

108 minimize a b [] = b

109 minimize a b (move:moves)

110 | a >= b' = b'

111 | otherwise = minimize a b' moves

112 where

113 b' = min b (minimax (applyMove board player move) (opposingPlayer player)

(depth - 1) a b)

114

115 -- Board evaluation

116 evaluateBoard :: Board -> Player -> Int

117 evaluateBoard board player = scoreForPlayer - scoreForOpponent

118 where

119 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

120 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

121

122

123

othello/app/side_side_3.hs

1 {-# LANGUAGE BangPatterns #-}

2

3 import System.Environment (getArgs)

4 import System.IO (readFile)

5 import Data.Array (array, listArray, assocs)

6 import Data.Foldable (maximumBy)

7 import Data.Ord (comparing)

8 import Control.Parallel.Strategies (parMap,parListChunk, rdeepseq)

9 import Othello.GameLogic (

10 GameSetup(..), Player(..), initialGameState, Board(..), DiscState(..),

11 movesForPlayer, applyMove, Coordinate, opposingPlayer

12)

13 import GHC.Conc (numCapabilities)

14 import Data.List.Split (chunksOf)

15

16 -- Parse a custom board state from a string

17 parseCustomBoard :: String -> Int -> Board

18 parseCustomBoard input dim = Board {

19 grid = listArray ((0, 0), (dim-1, dim-1)) discStates,

20 boardDim = dim

21 }

22 where

23 rows = lines input

24 discStates = concatMap parseRow rows

25 parseRow row = map parseDiscState (words row)

26 parseDiscState "E" = Empty

27 parseDiscState "R" = Placed Red

28 parseDiscState "B" = Placed Blue

29 parseDiscState _ = error "Invalid disc state in custom board. Use 'E', 'R', or

'B'."

30

31

32 -- Define a simple entry point for the program

33 main :: IO ()

34 main = do

35 -- Get command-line arguments

36 args <- getArgs

37

38 -- Parse depth arguments

39 let (depth, parallelDepth, inputFile) = case args of

40 (d:p:file:_) -> (read d, read p, Just file)

41 (d:p:_) -> (read d, read p, Nothing)

42 _ -> error "Usage: <depth> <parallelDepth> [gameboard file]"

43

44 -- Load the custom board or use the default initial game state

45 gameSetup <- case inputFile of

46 Just file -> do

47 content <- readFile file

48 let customBoard = parseCustomBoard content 8 -- Assume an 8x8 board for

simplicity

49 return GameSetup {

50 board = customBoard,

51 aiPlays = [Red, Blue],

52 searchDepth = depth

53 }

54 Nothing -> return (initialGameState 8 [Red, Blue] depth)

55

56 putStrLn $ "Using minimax depth: " ++ show depth

57 putStrLn $ "Parallelizing at depth: " ++ show parallelDepth

58

59 let currentPlayer = Red

60

61 let moves = getAIMove gameSetup currentPlayer depth parallelDepth

62 if null moves

63 then putStrLn "No valid moves available."

64 else do

65 let selectedMove = head moves

66 let updatedBoard = applyMove (board gameSetup) currentPlayer [selectedMove]

67 putStrLn $ "Next move: " ++ show selectedMove

68 putStrLn "Updated board state:"

69 print updatedBoard

70

71 -- Define a custom AI move function using alpha-beta pruning

72 getAIMove :: GameSetup -> Player -> Int -> Int -> [Coordinate]

73 getAIMove setup player depth parallelDepth

74 | null possibleMoves = [] -- No moves available

75 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

76 where

77 possibleMoves = movesForPlayer (board setup) player

78

79 evaluatedMoves =

80 if depth == parallelDepth

81 then parallelEvaluate possibleMoves

82 else sequentialEvaluate possibleMoves

83

84 sequentialEvaluate moves =

85 [(move, minimax (applyMove (board setup) player move) (opposingPlayer player)

(depth - 1) parallelDepth minBound maxBound)

86 | move <- moves]

87

88 parallelEvaluate moves =

89 let chunkSize = max 1 (length moves `div` numCapabilities) -- Split moves into

chunks

90 eval move = (move, minimax (applyMove (board setup) player move)

(opposingPlayer player) (depth - 1) parallelDepth minBound maxBound)

91 in concat $ parMap rdeepseq (map eval) (chunksOf chunkSize moves)

92

93 -- Minimax algorithm with alpha-beta pruning

94 minimax :: Board -> Player -> Int -> Int -> Int -> Int -> Int

95 minimax board player depth parallelDepth alpha beta

96 | depth == 0 || null possibleMoves = evaluateBoard board player

97 | player == maximizingPlayer = maximize alpha beta possibleMoves

98 | otherwise = minimize alpha beta possibleMoves

99 where

100 possibleMoves = movesForPlayer board player

101 maximizingPlayer = Red

102

103 maximize :: Int -> Int -> [[Coordinate]] -> Int

104 maximize a b [] = a

105 maximize a b (move:moves)

106 | a' >= b = a'

107 | otherwise = maximize a' b moves

108 where

109 a' = max a (nextEval move a b)

110

111 minimize :: Int -> Int -> [[Coordinate]] -> Int

112 minimize a b [] = b

113 minimize a b (move:moves)

114 | a >= b' = b'

115 | otherwise = minimize a b' moves

116 where

117 b' = min b (nextEval move a b)

118

119 nextEval move a b

120 | depth == parallelDepth =

121 let results = parMap rdeepseq eval possibleMoves

122 in if player == maximizingPlayer then maximum results else minimum results

123 | otherwise =

124 minimax (applyMove board player move) (opposingPlayer player) (depth - 1)

parallelDepth a b

125 where

126 eval move = minimax (applyMove board player move) (opposingPlayer player)

(depth - 1) parallelDepth a b

127

128

129

130 -- Board evaluation

131 evaluateBoard :: Board -> Player -> Int

132 evaluateBoard board player = scoreForPlayer - scoreForOpponent

133 where

134 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

135 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

136

137

138

othello/app/side_side_4.hs

1 {-# LANGUAGE BangPatterns #-}

2

3 import System.Environment (getArgs)

4 import System.IO (readFile)

5 import Data.Array (array, listArray, assocs)

6 import Data.Foldable (maximumBy)

7 import Data.Ord (comparing)

8 import Control.Parallel.Strategies (parMap,parListChunk, rdeepseq)

9 import Othello.GameLogic (

10 GameSetup(..), Player(..), initialGameState, Board(..), DiscState(..),

11 movesForPlayer, applyMove, Coordinate, opposingPlayer

12)

13 import GHC.Conc (numCapabilities)

14 import Data.List.Split (chunksOf)

15

16 -- Parse a custom board state from a string

17 parseCustomBoard :: String -> Int -> Board

18 parseCustomBoard input dim = Board {

19 grid = listArray ((0, 0), (dim-1, dim-1)) discStates,

20 boardDim = dim

21 }

22 where

23 rows = lines input

24 discStates = concatMap parseRow rows

25 parseRow row = map parseDiscState (words row)

26 parseDiscState "E" = Empty

27 parseDiscState "R" = Placed Red

28 parseDiscState "B" = Placed Blue

29 parseDiscState _ = error "Invalid disc state in custom board. Use 'E', 'R', or

'B'."

30

31 -- Main entry point

32 -- Define a simple entry point for the program

33 main :: IO ()

34 main = do

35 -- Get command-line arguments

36 args <- getArgs

37

38 -- Parse depth arguments

39 let (depth, parallelDepth, inputFile) = case args of

40 (d:p:file:_) -> (read d, read p, Just file)

41 (d:p:_) -> (read d, read p, Nothing)

42 _ -> error "Usage: <depth> <parallelDepth> [gameboard file]"

43

44 -- Load the custom board or use the default initial game state

45 gameSetup <- case inputFile of

46 Just file -> do

47 content <- readFile file

48 let customBoard = parseCustomBoard content 8 -- Assume an 8x8 board for

simplicity

49 return GameSetup {

50 board = customBoard,

51 aiPlays = [Red, Blue],

52 searchDepth = depth

53 }

54 Nothing -> return (initialGameState 8 [Red, Blue] depth)

55

56 putStrLn $ "Using minimax depth: " ++ show depth

57 putStrLn $ "Parallelizing at depth: " ++ show parallelDepth

58

59 let currentPlayer = Red

60

61 let moves = getAIMove gameSetup currentPlayer depth parallelDepth

62 if null moves

63 then putStrLn "No valid moves available."

64 else do

65 let selectedMove = head moves

66 let updatedBoard = applyMove (board gameSetup) currentPlayer [selectedMove]

67 putStrLn $ "Next move: " ++ show selectedMove

68 putStrLn "Updated board state:"

69 print updatedBoard

70

71

72 getAIMove :: GameSetup -> Player -> Int -> Int -> [Coordinate]

73 getAIMove setup player depth parallelDepth

74 | null possibleMoves = [] -- No moves available

75 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

76 where

77 possibleMoves = movesForPlayer (board setup) player

78

79 evaluatedMoves =

80 if depth == parallelDepth

81 then parallelEvaluate possibleMoves

82 else sequentialEvaluate possibleMoves

83

84 sequentialEvaluate moves =

85 [(move, minimax (applyMove (board setup) player move) (opposingPlayer player)

(depth - 1) parallelDepth minBound maxBound)

86 | move <- moves]

87

88 parallelEvaluate moves =

89 let chunkSize = max 1 (length moves `div` numCapabilities) -- Split moves into

chunks

90 eval move = (move, minimax (applyMove (board setup) player move)

(opposingPlayer player) (depth - 1) parallelDepth minBound maxBound)

91 in concat $ parMap rdeepseq (map eval) (chunksOf chunkSize moves)

92

93 -- Minimax algorithm with alpha-beta pruning

94 minimax :: Board -> Player -> Int -> Int -> Int -> Int -> Int

95 minimax board player depth parallelDepth alpha beta

96 | depth == 0 || null possibleMoves = evaluateBoard board player --Base case

97 | player == maximizingPlayer = maximize alpha beta possibleMoves

98 | otherwise = minimize alpha beta possibleMoves

99 where

100 possibleMoves = movesForPlayer board player

101 maximizingPlayer = Red

102

103 maximize :: Int -> Int -> [[Coordinate]] -> Int

104 maximize a b [] = a

105 maximize a b (move:moves)

106 | a' >= b = a'

107 | otherwise = maximize a' b moves

108 where

109 a' = max a (nextEval move a b)

110

111 minimize :: Int -> Int -> [[Coordinate]] -> Int

112 minimize a b [] = b

113 minimize a b (move:moves)

114 | a >= b' = b'

115 | otherwise = minimize a b' moves

116 where

117 b' = min b (nextEval move a b)

118

119 nextEval move a b

120 | depth == parallelDepth =

121 let results = parMap rdeepseq eval possibleMoves

122 in if player == maximizingPlayer then maximum results else minimum results

123 | otherwise =

124 minimax (applyMove board player move) (opposingPlayer player) (depth - 1)

parallelDepth a b

125 where

126 eval move = minimax (applyMove board player move) (opposingPlayer player)

(depth - 1) parallelDepth a b

127

128

129

130 -- Board evaluation

131 evaluateBoard :: Board -> Player -> Int

132 evaluateBoard board player = scoreForPlayer - scoreForOpponent

133 where

134 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

135 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

136

137

othello/app/side_side_5.hs

1 module Main where

2

3 import GHC.Conc (numCapabilities)

4 import System.Environment (getArgs)

5 import System.IO (readFile)

6 import Data.Array (array, listArray, assocs)

7 import Data.Foldable (maximumBy)

8 import Data.Ord (comparing)

9 import Control.Parallel (par, pseq)

10 import Control.Parallel.Strategies (parList, parListChunk, rdeepseq, using, parMap)

11 import Othello.GameLogic (

12 GameSetup(..), Player(..), initialGameState, Board(..), DiscState(..),

13 movesForPlayer, applyMove, Coordinate, opposingPlayer

14)

15

16 -- Parse a custom board state from a string

17 parseCustomBoard :: String -> Int -> Board

18 parseCustomBoard input dim = Board {

19 grid = listArray ((0, 0), (dim-1, dim-1)) discStates,

20 boardDim = dim

21 }

22 where

23 rows = lines input

24 discStates = concatMap parseRow rows

25 parseRow row = map parseDiscState (words row)

26 parseDiscState "E" = Empty

27 parseDiscState "R" = Placed Red

28 parseDiscState "B" = Placed Blue

29 parseDiscState _ = error "Invalid disc state in custom board. Use 'E', 'R', or

'B'."

30

31 -- Define a simple entry point for the program

32 main :: IO ()

33 main = do

34 -- Get command-line arguments

35 args <- getArgs

36

37 -- Parse depth arguments

38 let (depth, parallelDepth, inputFile) = case args of

39 (d:p:file:_) -> (read d, read p, Just file)

40 (d:p:_) -> (read d, read p, Nothing)

41 _ -> error "Usage: <depth> <parallelDepth> [gameboard file]"

42

43 -- Load the custom board or use the default initial game state

44 gameSetup <- case inputFile of

45 Just file -> do

46 content <- readFile file

47 let customBoard = parseCustomBoard content 8 -- Assume an 8x8 board for

simplicity

48 return GameSetup {

49 board = customBoard,

50 aiPlays = [Red, Blue],

51 searchDepth = depth

52 }

53 Nothing -> return (initialGameState 8 [Red, Blue] depth)

54

55 putStrLn $ "Using minimax depth: " ++ show depth

56 putStrLn $ "Parallelizing at depth: " ++ show parallelDepth

57

58 let currentPlayer = Red

59

60 -- Calculate the next move for the current player with the specified depth

61 let moves = getAIMove gameSetup currentPlayer depth parallelDepth

62 if null moves

63 then putStrLn "No valid moves available."

64 else do

65 let selectedMove = head moves

66 let updatedBoard = applyMove (board gameSetup) currentPlayer [selectedMove]

67 putStrLn $ "Next move: " ++ show selectedMove

68 putStrLn "Updated board state:"

69 print updatedBoard

70

71 -- Minimax with optional parallelization

72 minimax :: Board -> Player -> Int -> Int -> Int -> Int -> Int

73 minimax board player depth alpha beta parallelDepth

74 | depth == 0 || null possibleMoves = evaluateBoard board player -- Base case

75 | depth == parallelDepth = parallelMinimaxAggressive board player depth alpha beta

possibleMoves

76 | otherwise = sequentialMinimax possibleMoves alpha beta

77 where

78 possibleMoves = movesForPlayer board player

79 maximizingPlayer = Red -- Assume Red is the maximizing player

80

81 -- Sequential minimax

82 sequentialMinimax :: [[Coordinate]] -> Int -> Int -> Int

83 sequentialMinimax [] a _ = a -- No more moves, return alpha

84 sequentialMinimax (move:moves) a b

85 | a >= b = a -- Prune the rest of the tree

86 | otherwise = sequentialMinimax moves a' b

87 where

88 a' = max a (evaluateMove board player (depth - 1) a b move)

89

90 evaluateMove :: Board -> Player -> Int -> Int -> Int -> [Coordinate] -> Int

91 evaluateMove b p d a b' move = minimax (applyMove b p move) (opposingPlayer p) d a

b' parallelDepth

92

93 -- parallelMinimax

94 parallelMinimaxAggressive :: Board -> Player -> Int -> Int -> Int -> [[Coordinate]] ->

Int

95 parallelMinimaxAggressive board player depth a b moves =

96 let chunkedMoves = map (:[]) moves `using` parListChunk (max 1 (length moves `div`

(round(1 * fromIntegral numCapabilities)))) rdeepseq

97 results = map (maximum . map (evaluateMove board player (depth - 1) a b))

chunkedMoves

98 in maximum results

99 where

100 evaluateMove :: Board -> Player -> Int -> Int -> Int -> [Coordinate] -> Int

101 evaluateMove b p d a b' move = minimax (applyMove b p move) (opposingPlayer p) d a

b' depth

102

103 -- AI

104 getAIMove :: GameSetup -> Player -> Int -> Int -> [Coordinate]

105 getAIMove setup player depth parallelDepth

106 | null possibleMoves = [] -- No moves available

107 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

108 where

109 -- Get all possible moves for the current player

110 possibleMoves = movesForPlayer (board setup) player

111

112 -- Evaluate each move using minimax

113 evaluatedMoves = [

114 (move, minimax (applyMove (board setup) player move) (opposingPlayer player)

(depth - 1) minBound maxBound parallelDepth)

115 | move <- possibleMoves

116]

117

118 -- Evaluate Board

119 evaluateBoard :: Board -> Player -> Int

120 evaluateBoard board player = scoreForPlayer - scoreForOpponent

121 where

122 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

123 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

124

othello/app/side_side_6.hs

1 module Main where

2

3 import System.Environment (getArgs)

4 import System.IO (readFile)

5 import Data.Array (array, listArray, assocs)

6 import Control.Parallel.Strategies (parMap, rdeepseq, parBuffer, using)

7 import Data.List (maximumBy)

8 import Data.Ord (comparing)

9 import Othello.GameLogic (

10 GameSetup(..), Player(..), initialGameState, Board(..), DiscState(..),

11 movesForPlayer, applyMove, Coordinate, opposingPlayer

12)

13

14 -- Parse a custom board state from a string

15 parseCustomBoard :: String -> Int -> Board

16 parseCustomBoard input dim = Board {

17 grid = listArray ((0, 0), (dim-1, dim-1)) discStates,

18 boardDim = dim

19 }

20 where

21 rows = lines input

22 discStates = concatMap parseRow rows

23 parseRow row = map parseDiscState (words row)

24 parseDiscState "E" = Empty

25 parseDiscState "R" = Placed Red

26 parseDiscState "B" = Placed Blue

27 parseDiscState _ = error "Invalid disc state in custom board. Use 'E', 'R', or

'B'."

28

29 -- Define a simple entry point for the program

30 main :: IO ()

31 main = do

32 -- Get command-line arguments

33 args <- getArgs

34

35 -- Parse depth arguments

36 let (depth, parallelDepth, inputFile) = case args of

37 (d:p:file:_) -> (read d, read p, Just file)

38 (d:p:_) -> (read d, read p, Nothing)

39 _ -> error "Usage: <depth> <parallelDepth> [gameboard file]"

40

41 -- Load the custom board or use the default initial game state

42 gameSetup <- case inputFile of

43 Just file -> do

44 content <- readFile file

45 let customBoard = parseCustomBoard content 8 -- Assume an 8x8 board for

simplicity

46 return GameSetup {

47 board = customBoard,

48 aiPlays = [Red, Blue],

49 searchDepth = depth

50 }

51 Nothing -> return (initialGameState 8 [Red, Blue] depth)

52

53 putStrLn $ "Using minimax depth: " ++ show depth

54 putStrLn $ "Parallelizing at depth: " ++ show parallelDepth

55

56 let currentPlayer = Red

57

58 -- Calculate the next move for the current player with the specified depth

59 let moves = getAIMoveParallel gameSetup currentPlayer depth parallelDepth

60 if null moves

61 then putStrLn "No valid moves available."

62 else do

63 let selectedMove = head moves

64 let updatedBoard = applyMove (board gameSetup) currentPlayer [selectedMove]

65 putStrLn $ "Next move: " ++ show selectedMove

66 putStrLn "Updated board state:"

67 print updatedBoard

68

69 -- Parallel Minimax with Alpha-Beta Pruning and controlled parallel depth

70 minimax :: Board -> Player -> Int -> Int -> Int -> Int -> Int

71 minimax board player depth alpha beta parallelDepth

72 | depth == 0 || null possibleMoves = evaluateBoard board player -- Base case

73 | depth > parallelDepth = sequentialMinimax alpha beta possibleMoves

74 | depth == parallelDepth = parallelMinimax alpha beta possibleMoves

75 | otherwise = sequentialMinimax alpha beta possibleMoves

76 where

77 possibleMoves = movesForPlayer board player

78

79 -- Sequential minimax

80 sequentialMinimax :: Int -> Int -> [[Coordinate]] -> Int

81 sequentialMinimax a b [] = if player == maximizingPlayer then a else b

82 sequentialMinimax a b (move:moves)

83 | player == maximizingPlayer = maximizing a b moves move

84 | otherwise = minimizing a b moves move

85 where

86 maximizing a b moves move = sequentialMinimax (max a (minimax (applyMove board

player move) (opposingPlayer player) (depth - 1) a b parallelDepth)) b moves

87 minimizing a b moves move = sequentialMinimax a (min b (minimax (applyMove

board player move) (opposingPlayer player) (depth - 1) a b parallelDepth)) moves

88

89 -- Parallel minimax

90 parallelMinimax :: Int -> Int -> [[Coordinate]] -> Int

91 parallelMinimax a b moves =

92 let results = map evaluateMove moves `using` parBuffer 2 rdeepseq

93 in if player == maximizingPlayer

94 then maximum results

95 else minimum results

96 where

97 evaluateMove move = minimax (applyMove board player move) (opposingPlayer

player) (depth - 1) a b parallelDepth

98

99 maximizingPlayer = Red -- Assume Red is the maximizing player

100

101 -- AI with parallelism and controlled depth

102 getAIMoveParallel :: GameSetup -> Player -> Int -> Int -> [Coordinate]

103 getAIMoveParallel setup player depth parallelDepth

104 | null possibleMoves = [] -- No moves available

105 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

106 where

107 -- Get all possible moves for the current player

108 possibleMoves = movesForPlayer (board setup) player

109

110 -- Evaluate moves in parallel

111 evaluatedMoves = map evaluateMove possibleMoves `using` parBuffer 2 rdeepseq

112 evaluateMove move = (move, minimax (applyMove (board setup) player move)

(opposingPlayer player) (depth - 1) minBound maxBound parallelDepth) `using` rdeepseq

113

114 evaluateBoard :: Board -> Player -> Int

115 evaluateBoard board player = scoreForPlayer - scoreForOpponent

116 where

117 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

118 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

119

othello/app/side_side_7.hs

1 module Main where

2

3

4 import Data.List.Split (chunksOf)

5 import GHC.Conc (numCapabilities)

6 import System.Environment (getArgs)

7 import System.IO (readFile)

8 import Data.Array (array, listArray, assocs)

9 import Control.Parallel.Strategies (parMap, rdeepseq, parBuffer, using)

10 import Data.List (maximumBy)

11 import Data.Ord (comparing)

12 import Othello.GameLogic (

13 GameSetup(..), Player(..), initialGameState, Board(..), DiscState(..),

14 movesForPlayer, applyMove, Coordinate, opposingPlayer

15)

16

17 -- Parse a custom board state from a string

18 parseCustomBoard :: String -> Int -> Board

19 parseCustomBoard input dim = Board {

20 grid = listArray ((0, 0), (dim-1, dim-1)) discStates,

21 boardDim = dim

22 }

23 where

24 rows = lines input

25 discStates = concatMap parseRow rows

26 parseRow row = map parseDiscState (words row)

27 parseDiscState "E" = Empty

28 parseDiscState "R" = Placed Red

29 parseDiscState "B" = Placed Blue

30 parseDiscState _ = error "Invalid disc state in custom board. Use 'E', 'R', or

'B'."

31

32 -- Define a simple entry point for the program

33 -- Define a simple entry point for the program

34 main :: IO ()

35 main = do

36 -- Get command-line arguments

37 args <- getArgs

38

39 -- Parse depth arguments

40 let (depth, parallelDepth, inputFile) = case args of

41 (d:p:file:_) -> (read d, read p, Just file)

42 (d:p:_) -> (read d, read p, Nothing)

43 _ -> error "Usage: <depth> <parallelDepth> [gameboard file]"

44

45 -- Load the custom board or use the default initial game state

46 gameSetup <- case inputFile of

47 Just file -> do

48 content <- readFile file

49 let customBoard = parseCustomBoard content 8 -- Assume an 8x8 board for

simplicity

50 return GameSetup {

51 board = customBoard,

52 aiPlays = [Red, Blue],

53 searchDepth = depth

54 }

55 Nothing -> return (initialGameState 8 [Red, Blue] depth)

56

57 putStrLn $ "Using minimax depth: " ++ show depth

58 putStrLn $ "Parallelizing at depth: " ++ show parallelDepth

59

60 let currentPlayer = Red

61

62 -- Calculate the next move for the current player with the specified depth

63 let moves = getAIMoveParallel gameSetup currentPlayer depth parallelDepth

64 if null moves

65 then putStrLn "No valid moves available."

66 else do

67 let selectedMove = head moves

68 let updatedBoard = applyMove (board gameSetup) currentPlayer [selectedMove]

69 putStrLn $ "Next move: " ++ show selectedMove

70 putStrLn "Updated board state:"

71 print updatedBoard

72

73 --minimax search tree

74 minimax :: Board -> Player -> Int -> Int -> Int -> Int -> Int

75 minimax board player depth alpha beta parallelDepth

76 | depth == 0 || null possibleMoves = evaluateBoard board player -- Base case

77 | depth > parallelDepth = sequentialMinimax alpha beta possibleMoves

78 | depth == parallelDepth = parallelMinimax alpha beta possibleMoves

79 | otherwise = sequentialMinimax alpha beta possibleMoves

80 where

81 possibleMoves = movesForPlayer board player

82

83 -- Sequential minimax

84 sequentialMinimax :: Int -> Int -> [[Coordinate]] -> Int

85 sequentialMinimax a b [] = if player == maximizingPlayer then a else b

86 sequentialMinimax a b (move:moves)

87 | player == maximizingPlayer = maximizing a b moves move

88 | otherwise = minimizing a b moves move

89 where

90 maximizing a b moves move = sequentialMinimax (max a (minimax (applyMove board

player move) (opposingPlayer player) (depth - 1) a b parallelDepth)) b moves

91 minimizing a b moves move = sequentialMinimax a (min b (minimax (applyMove

board player move) (opposingPlayer player) (depth - 1) a b parallelDepth)) moves

92

93 -- Parallel minimax

94 parallelMinimax :: Int -> Int -> [[Coordinate]] -> Int

95 parallelMinimax a b moves =

96 let

97 -- Number of threads available

98 threads = numCapabilities

99

100 bufferSize = max 1 (round (2 * fromIntegral threads))

101 chunkSize = max 1 (length moves `div` (max 1 (round (fromIntegral threads *

fromIntegral threads/3))))

102 chunkedMoves = chunksOf chunkSize moves

103

104 results = map (maximum . map evaluateMove) chunkedMoves `using` parBuffer

bufferSize rdeepseq

105 in if player == maximizingPlayer

106 then maximum results

107 else minimum results

108 where

109 -- Evaluates a single move

110 evaluateMove move = minimax (applyMove board player move) (opposingPlayer

player) (depth - 1) a b parallelDepth

111 maximizingPlayer = Red -- Assume Red is the maximizing player

112

113 -- AI with parallelism and controlled depth

114 getAIMoveParallel :: GameSetup -> Player -> Int -> Int -> [Coordinate]

115 getAIMoveParallel setup player depth parallelDepth

116 | null possibleMoves = [] -- No moves available

117 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

118 where

119 -- Get all possible moves for the current player

120 possibleMoves = movesForPlayer (board setup) player

121

122 -- Evaluate moves in parallel

123 evaluatedMoves = map evaluateMove possibleMoves `using` parBuffer 2 rdeepseq

124 evaluateMove move = (move, minimax (applyMove (board setup) player move)

(opposingPlayer player) (depth - 1) minBound maxBound parallelDepth) `using` rdeepseq

125

126 evaluateBoard :: Board -> Player -> Int

127 evaluateBoard board player = scoreForPlayer - scoreForOpponent

128 where

129 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

130 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

131

othello/app/side_side_8.hs

1 module Main where

2

3 import System.Environment (getArgs)

4 import System.IO (readFile)

5 import Data.Array (array, listArray, assocs)

6 import Data.Foldable (maximumBy)

7 import Data.Ord (comparing)

8 import Control.Parallel (par, pseq)

9 import Control.Parallel.Strategies (parList, parListChunk, rdeepseq, using,parMap)

10 import Othello.GameLogic (

11 GameSetup(..), Player(..), initialGameState, Board(..), DiscState(..),

12 movesForPlayer, applyMove, Coordinate, opposingPlayer

13)

14

15 -- Parse a custom board state from a string

16 parseCustomBoard :: String -> Int -> Board

17 parseCustomBoard input dim = Board {

18 grid = listArray ((0, 0), (dim-1, dim-1)) discStates,

19 boardDim = dim

20 }

21 where

22 rows = lines input

23 discStates = concatMap parseRow rows

24 parseRow row = map parseDiscState (words row)

25 parseDiscState "E" = Empty

26 parseDiscState "R" = Placed Red

27 parseDiscState "B" = Placed Blue

28 parseDiscState _ = error "Invalid disc state in custom board. Use 'E', 'R', or

'B'."

29

30 -- Define a simple entry point for the program

31 main :: IO ()

32 main = do

33 -- Get command-line arguments

34 args <- getArgs

35

36 -- Parse depth arguments

37 let (depth, parallelDepth, inputFile) = case args of

38 (d:p:file:_) -> (read d, read p, Just file)

39 (d:p:_) -> (read d, read p, Nothing)

40 _ -> error "Usage: <depth> <parallelDepth> [gameboard file]"

41

42 -- Load the custom board or use the default initial game state

43 gameSetup <- case inputFile of

44 Just file -> do

45 content <- readFile file

46 let customBoard = parseCustomBoard content 8 -- Assume an 8x8 board for

simplicity

47 return GameSetup {

48 board = customBoard,

49 aiPlays = [Red, Blue],

50 searchDepth = depth

51 }

52 Nothing -> return (initialGameState 8 [Red, Blue] depth)

53

54 putStrLn $ "Using minimax depth: " ++ show depth

55 putStrLn $ "Parallelizing at depth: " ++ show parallelDepth

56

57 let currentPlayer = Red

58

59 -- Calculate the next move for the current player with the specified depth

60 let moves = getAIMove gameSetup currentPlayer depth parallelDepth

61 if null moves

62 then putStrLn "No valid moves available."

63 else do

64 let selectedMove = head moves

65 let updatedBoard = applyMove (board gameSetup) currentPlayer [selectedMove]

66 putStrLn $ "Next move: " ++ show selectedMove

67 putStrLn "Updated board state:"

68 print updatedBoard

69

70 -- Minimax with optional parallelization

71 minimax :: Board -> Player -> Int -> Int -> Int -> Int -> Int

72 minimax board player depth alpha beta parallelDepth

73 | depth == 0 || null possibleMoves = evaluateBoard board player -- Base case:

evaluate board

74 | depth == parallelDepth = parallelMinimax possibleMoves alpha beta

75 | otherwise = sequentialMinimax possibleMoves alpha beta

76 where

77 possibleMoves = movesForPlayer board player

78 maximizingPlayer = Red -- Assume Red is the maximizing player

79

80 -- Parallel minimax evaluation (Option 1: Parallelize at one depth)

81 parallelMinimax :: [[Coordinate]] -> Int -> Int -> Int

82 parallelMinimax moves a b =

83 let results = parMap rdeepseq (evaluateMove board player (depth - 1) a b) moves

84 in maximum results

85

86 -- Sequential minimax evaluation

87 sequentialMinimax :: [[Coordinate]] -> Int -> Int -> Int

88 sequentialMinimax [] a _ = a -- No more moves, return alpha

89 sequentialMinimax (move:moves) a b

90 | a >= b = a -- Prune the rest of the tree

91 | otherwise = sequentialMinimax moves a' b

92 where

93 a' = max a (evaluateMove board player (depth - 1) a b move)

94

95 evaluateMove :: Board -> Player -> Int -> Int -> Int -> [Coordinate] -> Int

96 evaluateMove b p d a b' move = minimax (applyMove b p move) (opposingPlayer p) d a

b' parallelDepth

97

98 -- Parallelization Option 2: Divide the Tree Aggressively

99 parallelMinimaxAggressive :: Board -> Player -> Int -> Int -> Int -> [[Coordinate]] ->

Int

100 parallelMinimaxAggressive board player depth a b moves =

101 let chunkedMoves = map (:[]) moves `using` parListChunk 2 rdeepseq

102 results = map (maximum . map (evaluateMove board player (depth - 1) a b))

chunkedMoves

103 in maximum results

104 where

105 evaluateMove :: Board -> Player -> Int -> Int -> Int -> [Coordinate] -> Int

106 evaluateMove b p d a b' move = minimax (applyMove b p move) (opposingPlayer p) d a

b' depth

107

108 -- AI

109 getAIMove :: GameSetup -> Player -> Int -> Int -> [Coordinate]

110 getAIMove setup player depth parallelDepth

111 | null possibleMoves = [] -- No moves available

112 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

113 where

114 -- Get all possible moves for the current player

115 possibleMoves = movesForPlayer (board setup) player

116

117 -- Evaluate each move using minimax

118 evaluatedMoves = [

119 (move, minimax (applyMove (board setup) player move) (opposingPlayer player)

(depth - 1) minBound maxBound parallelDepth)

120 | move <- possibleMoves

121]

122

123 -- Example board evaluation function

124 evaluateBoard :: Board -> Player -> Int

125 evaluateBoard board player = scoreForPlayer - scoreForOpponent

126 where

127 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

128 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

129

othello/app/side_side_9.hs

1 module Main where

2

3 import GHC.Conc (numCapabilities)

4 import System.Environment (getArgs)

5 import System.IO (readFile)

6 import Data.Array (array, listArray, assocs)

7 import Data.Foldable (maximumBy)

8 import Data.Ord (comparing)

9 import Control.Parallel (par, pseq)

10 import Control.Parallel.Strategies (parList, parListChunk, rdeepseq, using,parMap)

11 import Othello.GameLogic (

12 GameSetup(..), Player(..), initialGameState, Board(..), DiscState(..),

13 movesForPlayer, applyMove, Coordinate, opposingPlayer

14)

15

16 -- Parse a custom board state from a string

17 parseCustomBoard :: String -> Int -> Board

18 parseCustomBoard input dim = Board {

19 grid = listArray ((0, 0), (dim-1, dim-1)) discStates,

20 boardDim = dim

21 }

22 where

23 rows = lines input

24 discStates = concatMap parseRow rows

25 parseRow row = map parseDiscState (words row)

26 parseDiscState "E" = Empty

27 parseDiscState "R" = Placed Red

28 parseDiscState "B" = Placed Blue

29 parseDiscState _ = error "Invalid disc state in custom board. Use 'E', 'R', or

'B'."

30

31 -- Define a simple entry point for the program

32 main :: IO ()

33 main = do

34 -- Get command-line arguments

35 args <- getArgs

36

37 -- Parse depth arguments

38 let (depth, parallelDepth, inputFile) = case args of

39 (d:p:file:_) -> (read d, read p, Just file)

40 (d:p:_) -> (read d, read p, Nothing)

41 _ -> error "Usage: <depth> <parallelDepth> [gameboard file]"

42

43 -- Load the custom board or use the default initial game state

44 gameSetup <- case inputFile of

45 Just file -> do

46 content <- readFile file

47 let customBoard = parseCustomBoard content 8 -- Assume an 8x8 board for

simplicity

48 return GameSetup {

49 board = customBoard,

50 aiPlays = [Red, Blue],

51 searchDepth = depth

52 }

53 Nothing -> return (initialGameState 8 [Red, Blue] depth)

54

55 putStrLn $ "Using minimax depth: " ++ show depth

56 putStrLn $ "Parallelizing at depth: " ++ show parallelDepth

57

58 let currentPlayer = Red

59

60 -- Calculate the next move for the current player with the specified depth

61 let moves = getAIMove gameSetup currentPlayer depth parallelDepth

62 if null moves

63 then putStrLn "No valid moves available."

64 else do

65 let selectedMove = head moves

66 let updatedBoard = applyMove (board gameSetup) currentPlayer [selectedMove]

67 putStrLn $ "Next move: " ++ show selectedMove

68 putStrLn "Updated board state:"

69 print updatedBoard

70

71 -- Minimax game board

72 minimax :: Board -> Player -> Int -> Int -> Int -> Int -> Int

73 minimax board player depth alpha beta parallelDepth

74 | depth == 0 || null possibleMoves = evaluateBoard board player -- Base case

75 | depth == parallelDepth = parallelMinimax possibleMoves alpha beta

76 | otherwise = sequentialMinimax possibleMoves alpha beta

77 where

78 possibleMoves = movesForPlayer board player

79 maximizingPlayer = Red -- Assume Red is the maximizing player

80

81 -- Parallel minimax evaluation

82 parallelMinimax :: [[Coordinate]] -> Int -> Int -> Int

83 parallelMinimax moves a b =

84 let results = parMap rdeepseq (evaluateMove board player (depth - 1) a b) moves

85 in maximum results

86

87 -- Sequential minimax evaluation

88 sequentialMinimax :: [[Coordinate]] -> Int -> Int -> Int

89 sequentialMinimax [] a _ = a -- No more moves, return alpha

90 sequentialMinimax (move:moves) a b

91 | a >= b = a -- Prune the rest of the tree

92 | otherwise = sequentialMinimax moves a' b

93 where

94 a' = max a (evaluateMove board player (depth - 1) a b move)

95

96 evaluateMove :: Board -> Player -> Int -> Int -> Int -> [Coordinate] -> Int

97 evaluateMove b p d a b' move = minimax (applyMove b p move) (opposingPlayer p) d a

b' parallelDepth

98

99 -- AI

100 getAIMove :: GameSetup -> Player -> Int -> Int -> [Coordinate]

101 getAIMove setup player depth parallelDepth

102 | null possibleMoves = [] -- No moves available

103 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

104 where

105 -- Get all possible moves for the current player

106 possibleMoves = movesForPlayer (board setup) player

107

108 -- Evaluate each move using minimax

109 evaluatedMoves = [

110 (move, minimax (applyMove (board setup) player move) (opposingPlayer player)

(depth - 1) minBound maxBound parallelDepth)

111 | move <- possibleMoves

112]

113 --evaluate Board

114 evaluateBoard :: Board -> Player -> Int

115 evaluateBoard board player = scoreForPlayer - scoreForOpponent

116 where

117 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

118 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

119

othello/benchmark_performance.py

1 import subprocess

2 import sys

3 import re

4 import argparse

5

6 def parse_output(stdout):

7 total_time_pattern = r"Total\s+time\s+\d+\.\d+s\s+\(\s+([\d\.]+)s"

8 tasks_pattern = r"TASKS:\s+(\d+)"

9 sparks_pattern = r"SPARKS:\s+(\d+)"

10

11 total_time_match = re.search(total_time_pattern, stdout)

12 tasks_match = re.search(tasks_pattern, stdout)

13 sparks_match = re.search(sparks_pattern, stdout)

14

15 total_time = float(total_time_match.group(1)) if total_time_match else None

16 tasks = int(tasks_match.group(1)) if tasks_match else None

17 sparks = int(sparks_match.group(1)) if sparks_match else None

18

19 return total_time, tasks, sparks

20

21 def run_benchmark(test_file="custom_game_1.txt", iterate="parallel_depth", depth=7,

parallel_depth=1):

22 results = {}

23 iteration_range = range(1, max(depth, parallel_depth) + 1)

24 threads_range = range(1, 9)

25

26 if iterate == "depth":

27 depth_range = iteration_range

28 parallel_depth_range = [parallel_depth]

29 threads_range = [4]

30 elif iterate == "parallel_depth":

31 depth_range = [depth]

32 parallel_depth_range = iteration_range

33 threads_range = [4]

34 elif iterate == "num_threads":

35 depth_range = [depth]

36 parallel_depth_range = [parallel_depth]

37 else:

38 print(f"Invalid iterate value: {iterate}. Use 'depth', 'parallel_depth', or

'num_threads'.")

39 return

40

41 for d in depth_range:

42 for pd in parallel_depth_range:

43 for threads in threads_range:

44 print(f"Running tests with depth {d}, parallel depth {pd}, threads

{threads}...")

45

46 total_times = []

47 total_tasks = []

48 total_sparks = []

49

50 for _ in range(5):

51 # Prepare the command

52 command = [

53 "cabal", "run", "othello", "--", str(d), str(pd), test_file,

"+RTS", "-s", f"-N{threads}"

54]

55

56 try:

57 result = subprocess.run(command, capture_output=True,

text=True, check=True)

58 stdout = result.stdout

59 stderr = result.stderr

60

61 total_time, tasks, sparks = parse_output(stdout + stderr)

62

63 if total_time is not None and tasks is not None and sparks is

not None:

64 total_times.append(total_time)

65 total_tasks.append(tasks)

66 total_sparks.append(sparks)

67 else:

68 print(f"Warning: Missing data in the output for depth {d},

parallel depth {pd}, threads {threads}")

69

70

71 except subprocess.CalledProcessError as e:

72 print(f"Error running command {command}: {e}")

73 continue

74

75 # Compute averages for this configuration

76 if total_times:

77 avg_total_time = sum(total_times) / len(total_times)

78 avg_tasks = sum(total_tasks) / len(total_tasks)

79 avg_sparks = sum(total_sparks) / len(total_sparks)

80 results[(d, pd, threads)] = {

81 "avg_total_time": avg_total_time,

82 "avg_tasks": avg_tasks,

83 "avg_sparks": avg_sparks

84 }

85

86 for (d, pd, threads), data in results.items():

87 print(f"Depth {d}, Parallel depth {pd}, Threads {threads}:")

88 print(f" Average Total Time: {data['avg_total_time']:.3f}s")

89 print(f" Average Tasks: {data['avg_tasks']}")

90 print(f" Average Sparks: {data['avg_sparks']}")

91

92 if __name__ == "__main__":

93 parser = argparse.ArgumentParser(description="Run benchmarks for Othello.")

94 parser.add_argument("--test_file", type=str, default="custom_game_1.txt",

help="Path to the test file.")

95 parser.add_argument("--iterate", type=str, choices=["depth", "parallel_depth",

"num_threads"], default="parallel_depth",

96 help="Parameter to iterate over: 'depth', 'parallel_depth', or

'num_threads'.")

97 parser.add_argument("--depth", type=int, default=7, help="Initial depth value.")

98 parser.add_argument("--parallel_depth", type=int, default=1, help="Initial parallel

depth value.")

99

100 args = parser.parse_args()

101

102 run_benchmark(

103 test_file=args.test_file,

104 iterate=args.iterate,

105 depth=args.depth,

106 parallel_depth=args.parallel_depth

107)

108

othello/cabal.project

packages: .

profiling: True

othello/custom_game_1.txt

E E E E E E E E

E E E E E E E E

E E E E E E E E

E E E R B E E E

E E E B R E E E

E E E E E E E E

E E E E E E E E

E E E E E E E E

othello/custom_game_2.txt

E E E E E E E E

E E E E E E E E

E E E E E E E E

E E E R B E E E

E E R B R B E E

E E E B R B E E

E E E E B E E E

E E E E E E E E

othello/haskell-othello.cabal

1 cabal-version: 2.4

2 name: haskell-othello

3 version: 0.1.0.0

4

5 -- A short (one-line) description of the package.

6 synopsis: Experiments in parallelizing an Othello minmax agent.

7

8 -- A longer description of the package.

9 description: Experiments in parallelizing an Othello minmax agent.

10

11 -- A URL where users can report bugs.

12 bug-reports: https://github.com/NoamHirschorn/PFP_final/issues

13

14 -- The license under which the package is released.

15 --license: MIT

16 --license-file: LICENSE

17

18 -- The package author(s).

19 --author: Noam Hirschorn, Dan Ivanovich. Adapted from code by Arttu. Y

20

21 -- An email address to which users can send suggestions, bug reports, and patches.

22 --maintainer: dmi2115@columbia.edu

23

24 -- A copyright notice.

25 copyright: 2024 Noam Hirschorn, Dan Ivanovich, Arttu. Y

26 category: Games

27

28 -- extra-source-files: CHANGELOG.md

29

30 library

31 exposed-modules: Othello.GameLogic

32

33 -- Modules included in this library but not exported.

34 -- other-modules:

35

36 -- LANGUAGE extensions used by modules in this package.

37 -- other-extensions:

38

39 build-depends:

40 base >=4.14.3.0 && <4.19,

41 array,

42 parallel,

43 deepseq >= 1.4,

44 split

45

46 hs-source-dirs: src

47 default-language: Haskell2010

48

49 executable othello

50 main-is: side_side_9.hs

51

52 -- Modules included in this executable, other than Main.

53 -- other-modules:

54

55 -- LANGUAGE extensions used by modules in this package.

56 -- other-extensions:

57

58 build-depends:

59 base >=4.14.3.0 && <4.19,

60 array,

61 parallel,

62 deepseq >= 1.4,

63 split,

64 haskell-othello

65

66 hs-source-dirs: app

67 default-language: Haskell2010

68

69 ghc-options: -threaded -rtsopts -with-rtsopts=-N -debug

70

othello/src/Othello/GameLogic.hs

1 {-#LANGUAGE InstanceSigs#-} -- Permit type declarations in instance definitions

2 {-# LANGUAGE TupleSections #-} -- Partial tuple constructors as functions

3 {-# LANGUAGE NamedFieldPuns #-} -- Allow more elegant construction of data

4

5 module Othello.GameLogic where

6 import Data.Array (Array, array, elems, inRange, bounds, (//))

7 import qualified Data.Array ((!))

8 import Data.Foldable (maximumBy, minimumBy)

9 import Data.Ord (comparing)

10 import Data.Array (Array, assocs, elems, bounds, (//))

11 -- Score is an integer, and coordinate is a pair of integers

12 type UnitScore = Int

13 type Coordinate = (Int, Int)

14

15 -- A player is either Red, or Blue. Derive comparison and Show

16 data Player = Red | Blue deriving (Eq, Show)

17

18 -- Each spot on a board is either empty, or placed with some player

19 data DiscState = Empty | Placed Player deriving (Eq, Show)

20

21 -- Board is essentially a grid of disc states, with the size attached

22 data Board = Board {

23 grid :: Array Coordinate DiscState,

24 boardDim :: Int

25 } deriving (Show)

26

27 -- For purposes of Minimax AI, we will need to measure the score of a given state. It

will be either a win, indeterminate with score of some kind (from the view of who is

requesting it), or a loss

28 data BoardScore = Win | Indeterminate UnitScore | Lose deriving (Eq, Show)

29

30 -- Define a order for a board score. For least complexity, define ordering as a set of

comparative properties between different scores

31 instance Ord BoardScore where

32 (<=) :: BoardScore -> BoardScore -> Bool

33 (<=) Lose _ = True -- Lose is the smallest and definitely equal

34 (<=) (Indeterminate _) Lose = False -- Indeterminate is never less or equal to a

win

35 (<=) (Indeterminate _) Win = True -- Indeterminate is always less than a win

36 (<=) (Indeterminate a) (Indeterminate b) = a <= b -- For two indeterminates, their

respective ordering depends on their scores

37 (<=) Win Win = True -- Win is equal with a win

38 (<=) Win _ = False -- Otherwise, no

39

40 -- Define a scoring function; given a player and a board, what is their score?

41 score :: Player -> Board -> BoardScore

42 score player board

43 | not (movesPossibleOnBoard board) && redLeading = if player == Red then Win else

Lose

44 | not (movesPossibleOnBoard board) && blueLeading = if player == Blue then Win else

Lose

45 | otherwise = Indeterminate (if player == Red then redCount else blueCount)

46 where

47 redLeading = redCount > blueCount

48 blueLeading = blueCount > redCount

49

50 (redCount, blueCount) = pieceCount board

51

52 data GameSetup = GameSetup {

53 board :: Board, -- Board

54 aiPlays :: [Player], -- Which turns AI plays?

55 searchDepth :: Int -- Search depth

56 } deriving (Show)

57 -- Core functions

58

59 -- Count of pieces, per color, for the board

60 pieceCount :: Board -> (Int, Int)

61 pieceCount board = foldr adder (0,0) (elems $ grid board) -- Add element by element,

start with zero scores for both

62 where

63 adder :: DiscState -> (Int, Int) -> (Int, Int)

64 adder state count@(red, blue) = case state of

65 Empty -> count

66 Placed Red -> (red+1, blue)

67 Placed Blue -> (red, blue+1)

68

69 -- Definition of the opposing player for a given player

70 opposingPlayer :: Player -> Player

71 opposingPlayer Red = Blue

72 opposingPlayer Blue = Red

73

74 -- Calculating which player is winning by their score; this does not consider if there

are more turns remaining

75 playerWithBestScore :: Board -> Maybe Player

76 playerWithBestScore board

77 | red == blue = Nothing

78 | otherwise = if red > blue then Just Red else Just Blue

79 where

80 (red, blue) = pieceCount board

81

82 -- Define an indexing operation for a board, quite alike what Arrays have

83 (!) :: Board -> Coordinate -> DiscState

84 board ! coordinate = (Data.Array.!) (grid board) coordinate

85

86 -- Define a validity check operator for indexes; this will return true if the index is

acceptable

87 (!?) :: Board -> Coordinate -> Bool

88 board !? coord = inRange (bounds $ grid board) coord

89

90 -- Define a grid comprehension function; mapping over coordinates of a grid, construct

some array of data

91 comprehensionByBoard :: Board -> (Coordinate -> x) -> [x]

92 comprehensionByBoard board = comprehensionByDim size

93 where

94 size = boardDim board

95

96 comprehensionByDim :: Int -> (Coordinate -> x) -> [x]

97 comprehensionByDim size func = [func (a,b) | a <- [0..size-1], b <- [0..size-1]]

98

99 initialGameState :: Int -> [Player] -> Int -> GameSetup

100 initialGameState dim aiPlays searchDepth = GameSetup { aiPlays, searchDepth, board }

101 where

102 board = Board { boardDim = dim, grid = array ((0, 0), (dim-1,dim-1))

(comprehensionByDim dim (\p -> (p, startPieces p))) }

103

104 startPieces :: Coordinate -> DiscState

105 startPieces (cx, cy)

106 | cx == (dim `div` 2) - 1 && cy == (dim `div` 2) - 1 = Placed Blue

107 | cx == (dim `div` 2) && cy == (dim `div` 2) = Placed Blue

108 | cx == (dim `div` 2) - 1 && cy == (dim `div` 2) = Placed Red

109 | cx == (dim `div` 2) && cy == (dim `div` 2) - 1 = Placed Red

110 | otherwise = Empty

111 ---- Moves and AI

112

113 -- For a given board, player and coordinate, determine what coordinates should be

changed to player's color. If an empty list is returned, move is not valid

114 -- This also includes the starting point given

115 getMovesOnPoint :: Board -> Player -> Coordinate -> [Coordinate]

116 getMovesOnPoint board player startCoord@(sx, sy)

117 | not (board !? startCoord) = [] -- Coordinate is not a valid position

118 | startPiece /= Empty = [] -- Starting piece is not empty

119 | null resultSteps = [] -- No valid steps exist

120 | otherwise = startCoord : resultSteps

121 where

122 resultSteps = concatMap walkAndMark directions -- Valid steps are a

concatenation of walked directions - per rules, we can and must mark all branched paths

123

124 walkAndMark :: Coordinate -> [Coordinate] -- If stepping from a given

direction, what can we mark (excluding start position)?

125 walkAndMark dir@(dx, dy) = walkAndMark' (sx+dx, sy+dy) dir []

126

127 walkAndMark' :: Coordinate -> Coordinate -> [Coordinate] -> [Coordinate] --

Current position, direction, found already

128 walkAndMark' cur@(cx, cy) dir@(dx, dy) found

129 | isEndPiece = found -- End piece, terminate here

130 | isValidTraversalPiece = walkAndMark' (cx+dx, cy+dy) dir (cur:found) --

Can traverse, step forward

131 | otherwise = [] -- No valid way to travel nor end, return nothing

132 where

133 isEndPiece = isValidPos && board ! cur == Placed player

134 isValidTraversalPiece = isValidPos && board ! cur == Placed

(opposingPlayer player)

135 isValidPos = board !? cur

136

137 directions = [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)] --

Which directions need to be checked. As defined in the rules, we work on either

horizontal, vertical or diagonal lines

138 startPiece = board ! startCoord

139

140 movesForPlayer :: Board -> Player -> [[Coordinate]] -- Return all movesets that are

nonempty, for a given player?

141 movesForPlayer board player = filter (not . null) mappedCoords

142 where

143 mappedCoords = comprehensionByBoard board (getMovesOnPoint board player)

144

145 movesPossibleOnBoard :: Board -> Bool -- Are there any moves possible on board?

146 movesPossibleOnBoard board = not (null (movesForPlayer board Red) && null

(movesForPlayer board Blue))

147

148 applyMove :: Board -> Player -> [Coordinate] -> Board

149 applyMove board player moveList = board { grid = grid board // map (, Placed player)

moveList }

150

151

othello/src/Othello/backup_Gamelog.hs

1 {-#LANGUAGE InstanceSigs#-} -- Permit type declarations in instance definitions

2 {-# LANGUAGE TupleSections #-} -- Partial tuple constructors as functions

3 {-# LANGUAGE NamedFieldPuns #-} -- Allow more elegant construction of data

4

5 module Othello.GameLogic where

6 import Data.Array (Array, array, elems, inRange, bounds, (//))

7 import qualified Data.Array ((!))

8 import Data.Foldable (maximumBy, minimumBy)

9 import Data.Ord (comparing)

10 import Data.Array (Array, assocs, elems, bounds, (//))

11 -- Score is an integer, and coordinate is a pair of integers

12 type UnitScore = Int

13 type Coordinate = (Int, Int)

14

15 -- A player is either Red, or Blue. Derive comparison and Show

16 data Player = Red | Blue deriving (Eq, Show)

17

18 -- Each spot on a board is either empty, or placed with some player

19 data DiscState = Empty | Placed Player deriving (Eq, Show)

20

21 -- Board is essentially a grid of disc states, with the size attached

22 data Board = Board {

23 grid :: Array Coordinate DiscState,

24 boardDim :: Int

25 } deriving (Show)

26

27 -- For purposes of Minimax AI, we will need to measure the score of a given state. It

will be either a win, indeterminate with score of some kind (from the view of who is

requesting it), or a loss

28 data BoardScore = Win | Indeterminate UnitScore | Lose deriving (Eq, Show)

29

30 -- Define a order for a board score. For least complexity, define ordering as a set of

comparative properties between different scores

31 instance Ord BoardScore where

32 (<=) :: BoardScore -> BoardScore -> Bool

33 (<=) Lose _ = True -- Lose is the smallest and definitely equal

34 (<=) (Indeterminate _) Lose = False -- Indeterminate is never less or equal to a

win

35 (<=) (Indeterminate _) Win = True -- Indeterminate is always less than a win

36 (<=) (Indeterminate a) (Indeterminate b) = a <= b -- For two indeterminates, their

respective ordering depends on their scores

37 (<=) Win Win = True -- Win is equal with a win

38 (<=) Win _ = False -- Otherwise, no

39

40 -- Define a scoring function; given a player and a board, what is their score?

41 score :: Player -> Board -> BoardScore

42 score player board

43 | not (movesPossibleOnBoard board) && redLeading = if player == Red then Win else

Lose

44 | not (movesPossibleOnBoard board) && blueLeading = if player == Blue then Win else

Lose

45 | otherwise = Indeterminate (if player == Red then redCount else blueCount)

46 where

47 redLeading = redCount > blueCount

48 blueLeading = blueCount > redCount

49

50 (redCount, blueCount) = pieceCount board

51

52 data GameSetup = GameSetup {

53 board :: Board, -- Board

54 aiPlays :: [Player], -- Which turns AI plays?

55 searchDepth :: Int -- Search depth

56 } deriving (Show)

57 -- Core functions

58

59 -- Count of pieces, per color, for the board

60 pieceCount :: Board -> (Int, Int)

61 pieceCount board = foldr adder (0,0) (elems $ grid board) -- Add element by element,

start with zero scores for both

62 where

63 adder :: DiscState -> (Int, Int) -> (Int, Int)

64 adder state count@(red, blue) = case state of

65 Empty -> count

66 Placed Red -> (red+1, blue)

67 Placed Blue -> (red, blue+1)

68

69 -- Definition of the opposing player for a given player

70 opposingPlayer :: Player -> Player

71 opposingPlayer Red = Blue

72 opposingPlayer Blue = Red

73

74 -- Calculating which player is winning by their score; this does not consider if there

are more turns remaining

75 playerWithBestScore :: Board -> Maybe Player

76 playerWithBestScore board

77 | red == blue = Nothing

78 | otherwise = if red > blue then Just Red else Just Blue

79 where

80 (red, blue) = pieceCount board

81

82 -- Define an indexing operation for a board, quite alike what Arrays have

83 (!) :: Board -> Coordinate -> DiscState

84 board ! coordinate = (Data.Array.!) (grid board) coordinate

85

86 -- Define a validity check operator for indexes; this will return true if the index is

acceptable

87 (!?) :: Board -> Coordinate -> Bool

88 board !? coord = inRange (bounds $ grid board) coord

89

90 -- Define a grid comprehension function; mapping over coordinates of a grid, construct

some array of data

91 comprehensionByBoard :: Board -> (Coordinate -> x) -> [x]

92 comprehensionByBoard board = comprehensionByDim size

93 where

94 size = boardDim board

95

96 comprehensionByDim :: Int -> (Coordinate -> x) -> [x]

97 comprehensionByDim size func = [func (a,b) | a <- [0..size-1], b <- [0..size-1]]

98

99 initialGameState :: Int -> [Player] -> Int -> GameSetup

100 initialGameState dim aiPlays searchDepth = GameSetup { aiPlays, searchDepth, board }

101 where

102 board = Board { boardDim = dim, grid = array ((0, 0), (dim-1,dim-1))

(comprehensionByDim dim (\p -> (p, startPieces p))) }

103

104 startPieces :: Coordinate -> DiscState

105 startPieces (cx, cy)

106 | cx == (dim `div` 2) - 1 && cy == (dim `div` 2) - 1 = Placed Blue

107 | cx == (dim `div` 2) && cy == (dim `div` 2) = Placed Blue

108 | cx == (dim `div` 2) - 1 && cy == (dim `div` 2) = Placed Red

109 | cx == (dim `div` 2) && cy == (dim `div` 2) - 1 = Placed Red

110 | otherwise = Empty

111 ---- Moves and AI

112

113 -- For a given board, player and coordinate, determine what coordinates should be

changed to player's color. If an empty list is returned, move is not valid

114 -- This also includes the starting point given

115 getMovesOnPoint :: Board -> Player -> Coordinate -> [Coordinate]

116 getMovesOnPoint board player startCoord@(sx, sy)

117 | not (board !? startCoord) = [] -- Coordinate is not a valid position

118 | startPiece /= Empty = [] -- Starting piece is not empty

119 | null resultSteps = [] -- No valid steps exist

120 | otherwise = startCoord : resultSteps

121 where

122 resultSteps = concatMap walkAndMark directions -- Valid steps are a

concatenation of walked directions - per rules, we can and must mark all branched paths

123

124 walkAndMark :: Coordinate -> [Coordinate] -- If stepping from a given

direction, what can we mark (excluding start position)?

125 walkAndMark dir@(dx, dy) = walkAndMark' (sx+dx, sy+dy) dir []

126

127 walkAndMark' :: Coordinate -> Coordinate -> [Coordinate] -> [Coordinate] --

Current position, direction, found already

128 walkAndMark' cur@(cx, cy) dir@(dx, dy) found

129 | isEndPiece = found -- End piece, terminate here

130 | isValidTraversalPiece = walkAndMark' (cx+dx, cy+dy) dir (cur:found) --

Can traverse, step forward

131 | otherwise = [] -- No valid way to travel nor end, return nothing

132 where

133 isEndPiece = isValidPos && board ! cur == Placed player

134 isValidTraversalPiece = isValidPos && board ! cur == Placed

(opposingPlayer player)

135 isValidPos = board !? cur

136

137 directions = [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)] --

Which directions need to be checked. As defined in the rules, we work on either

horizontal, vertical or diagonal lines

138 startPiece = board ! startCoord

139

140 movesForPlayer :: Board -> Player -> [[Coordinate]] -- Return all movesets that are

nonempty, for a given player?

141 movesForPlayer board player = filter (not . null) mappedCoords

142 where

143 mappedCoords = comprehensionByBoard board (getMovesOnPoint board player)

144

145 movesPossibleOnBoard :: Board -> Bool -- Are there any moves possible on board?

146 movesPossibleOnBoard board = not (null (movesForPlayer board Red) && null

(movesForPlayer board Blue))

147

148 applyMove :: Board -> Player -> [Coordinate] -> Board

149 applyMove board player moveList = board { grid = grid board // map (, Placed player)

moveList }

150

151 -- AI

152

153 getAIMove :: GameSetup -> Player -> Int -> [Coordinate]

154 getAIMove setup player depth

155 | null possibleMoves = [] -- No moves available

156 | otherwise = fst $ maximumBy (comparing snd) evaluatedMoves

157 where

158 -- Get all possible moves for the current player

159 possibleMoves = movesForPlayer (board setup) player

160

161 -- Evaluate each move using minimax

162 evaluatedMoves = [(move, minimax (applyMove (board setup) player move)

(opposingPlayer player) (depth - 1)) | move <- possibleMoves]

163

164 -- Minimax algorithm for game tree evaluation

165 minimax :: Board -> Player -> Int -> Int

166 minimax board player depth

167 | depth == 0 || null possibleMoves = evaluateBoard board player -- Base case:

evaluate board

168 | player == maximizingPlayer = maximum [minimax (applyMove board player move)

(opposingPlayer player) (depth - 1) | move <- possibleMoves]

169 | otherwise = minimum [minimax (applyMove board player move) (opposingPlayer

player) (depth - 1) | move <- possibleMoves]

170 where

171 possibleMoves = movesForPlayer board player

172 maximizingPlayer = Red -- Assume Red is the maximizing player

173

174 -- Example board evaluation function

175 evaluateBoard :: Board -> Player -> Int

176 evaluateBoard board player = scoreForPlayer - scoreForOpponent

177 where

178 scoreForPlayer = length [pos | (pos, state) <- assocs (grid board), state == Placed

player]

179 scoreForOpponent = length [pos | (pos, state) <- assocs (grid board), state ==

Placed (opposingPlayer player)]

180

