Nonogram
Solver

1

1

112479888974451788874454575311

46421

1236811

1

2

NOOANANANANTANANANN-TANANDLOL®O®-
LOANANANANDLLOTTONDTNVNOFTMNM
NSoootstTotTotToNON
ouOuMmMTm® (IR)

2
0191912(|2|4(4(0

O = | O | D] | Y N O

Parallel Functional Programming - Fall 2024
By: Dorothy Nelson, Jittisa (Jane) Kraprayoon

Index 2

INntro
Nonograms
Algorithm
Parallelization
Results

Next Steps

INTRO

PARALLEL ALGORITHM NONOGRAMS

RESULTS

NEXT STEPS

Nonograms

e Avisual puzzle to construct a picture by filling a grid of cells

e Constraints are provided for rows and columns

e Constraints specify how many blocks are consecutively filled.
There must also be a space in-between the blocks.

e Initially every cell is unfilled, and players must make inferences.

e Chosen for their scalable complexity.

o

HEEE

Lol SR R LR B e R LR Da) Bl Cand

PARALLEL ALGORITHM NONOGRAMS INTRO

RESULTS

NEXT STEPS

Data & Parsing

We collected nonograms from a public github
repo: https://github.com/mikix/nonogram-db
We categorized puzzles by their sizes (e.g.
10x10 is small, 75x50 is large)
parseNonogram was used to extract rowArgs

and colArgs (row and column constraints) to be
inputted into our algorithm

0 N LA WN

NNNNNNNNNRRRRRRP R B B 2
0 NOUSE WNRSOSO®OWMNOOUSAS:WNIERO®W

5 Vv puzzles_db
title "Bloop Bloop"

width 10 . large

height 10 brightly.txt
kde.txt

rows swing.txt

3,2 tiger.txt

3 wikimedia.txt

2,2 v medium

4 16.xt

4 21.txt

2,2 42.xt

41 100.txt

4,2 101.txt

252 102.txt

- blender.txt
flower.txt

columns gnome.txt

3 rhino.txt

2.2 spade.txt

224 ubuntu.txt

4 v small

- bloop.txt

. dancer.txt

1,4

il P27

4

https://github.com/mikix/nonogram-db

INTRO

PARALLEL ALGORITHM NONOGRAMS

RESULTS

NEXT STEPS

Algorithm

Our nonogram solver base algorithm can be described in three
parts:

1) constraint satisfaction
2) iterative inference

3) backtracking for unresolved cases.

PARALLEL ALGORITHM NONOGRAMS INTRO

RESULTS

NEXT STEPS

1) Constraint Satisfaction

The algorithm begins by iterating through each row and column constraint to compute
possible placements of blocks for each line.

computeBlocksSeq :: Int -> [Int] -> [[Int]]

e takesthe total line length and block constraints as inputs. It recursively places blocks
into different start positions and continues with the remaining blocks.

e For example, given lineLength = 7 and lineConstraint = [2, 3], the function would
output [[O, 3], [1, 4]], representing the start positions of the blocks.

generateBlocksSeq :: [[Int]] -> [Int] -> Int -> [[Int]]

e takesthe output of computeBlocks—the potential starting positions of the
blocks—and generates a binary array (Ints of 1s and Os) to represent possible line
configurations.

Possible placements are stored in PlacementsDict and updated at each iteration.

PARALLEL ALGORITHM NONOGRAMS INTRO

RESULTS

NEXT STEPS

2) Iterative Inference

Purpose: Iteratively deduce definite cell values based on all possible line configurations.

e The main function is IterativeSolve which calls inferValues and updatePlacements.
IterativeSolve recursively calls itself until the nonogram is solved.

e inferValues: If acellis filled in all possible configurations, it must be black. If a cell is
unfilled in all possible configurations, it must be white. -1 represents unknowns. Ex.
[[0,1,0,0],[0,1,1,1]] —[[O, 1,-1,-1]]

e AfterinferValues, we run updatePlacements — prune the search space as some
placements are now not possible

iterativeSolveSeq :: PartialSolution
-> PlacementsDict
-> [Constraint]
-> [Constraint]
=> Set Int
-> Set Int
-> (PartialSolution, PlacementsDict, Set Int, Set Int)

PARALLEL ALGORITHM NONOGRAMS INTRO

RESULTS

NEXT STEPS

3) Backtracking

Purpose: backtrack Solve ambiguous nonograms with multiple solutions that cannot be
resolved through iterative solving alone.
e Triesdifferent placements within a row.
e Checks if the placement results in a valid grid.
e Ifit'svalid, call backtrack recursively until all rows are completed. This is the base
case of the recursion.

backtrack :: PartialSolution
-> Array Int (Set [Int])
-> [Constraint]
-> [Constraint]
=> Set Int
=> Set Int
-> [PartialSolution]
-> [PartialSolution]

INTRO

RESULTS PARALLEL ALGORITHM NONOGRAMS

NEXT STEPS

Sequential Benchmark

Total Time Elapsed

)

Small Bloop (10x10) 0.01
Ubuntu (35x35) 243

Medium 42 (23x35) 0.18
Wikimedia (38x39) 1.75

7 medium puzzles solved

Large sequentially 36.77

let filePaths

-

Time Elapsed (s)

2.5

201

15[

051

Number of Cells vs. Time Elapsed

Time vs. Cells Ubuntu (35x35)

Wikimedia (38x39)

42 (23x35)
oop (¥0x10)

200 400 600 800 1000 1200 1400
Number of Cells (Width x Height)

Difficulty of nonogram comes not only from the
size, but also how sparse the constraints are.

["puzzles_db/medium/42.txt", "puzzles_db/medium/blender.txt", "puzzles_db/medium/gnome.txt",
"puzzles_db/medium/spade.txt", "puzzles_db/medium/rhino.txt",
"puzzles_db/medium/ubuntu.txt", "puzzles_db/medium/flower.txt"]

RESULTS PARALLEL ALGORITHM NONOGRAMS INTRO

NEXT STEPS

10

Parallelization

Motivation for Parallelization

e Row and column processing can be done independently.
e Example: Computing starting placements for one row is unaffected by other rows.

Parallelization Strategy

e Control.Parallel.Strategies (parMap, rdeepseq). We parallelized specific
functions contributing to the main algorithm: inferValuesPar, computeBlocksPar,
and generateBlocksPar

RESULTS PARALLEL ALGORITHM NONOGRAMS INTRO

NEXT STEPS

Parallelization

We tested combinations of: inferValuesPar, computeBlocksPar, and

generateBlocksPar

solveSequential :: FilePath -> IO ()
solveSequential = solveNonogramFromFile computeBlocksSeq generateBlocksSeq iterativeSolveSeq

solveParallelComputeBlocks :: FilePath -> I0 ()
solveParallelComputeBlocks = solveNonogramFromFile computeBlocksPar generateBlocksSeq iterativeSolveSeq

solveParallelGenerateBlocks :: FilePath -> I0 ()
solveParallelGenerateBlocks = solveNonogramFromFile computeBlocksSeq generateBlocksPar iterativeSolveSeq

solveParallelComputeGenerate :: FilePath -> I0 ()
solveParallelComputeGenerate = solveNonogramFromFile computeBlocksPar generateBlocksPar
iterativeSolveSeq

solveParallelIterativeSolve :: FilePath -> I0 ()
solveParallelIterativeSolve = solveNonogramFromFile computeBlocksSeq generateBlocksSeq iterativeSolvePar

solveFullyParallel :: FilePath -> I0 ()
solveFullyParallel = solveNonogramFromFile computeBlocksPar generateBlocksPar iterativeSolvePar

11

INTRO

PARALLEL ALGORITHM NONOGRAMS

RESULTS

Results

Max Speedup
Sequential 1.00
Parallel Compute 1.40
Parallel Generate 1.88
Parallel Compute Generate 1.50
Parallel Iterative Solve 1.71
Fully Parallel 1.50

NEXT STEPS

Speedup = (Sequential benchmark) / (Shortest time elapsed for algorithm)

Parallel Generate: Achieved the best performance with a 1.88x speed-up.

RESULTS PARALLEL ALGORITHM NONOGRAMS INTRO

NEXT STEPS

Results

Performance of Algorithms by Number of Threads

35.0 1

32.5 1

8
o

Time Elapsed (s)
N
~
wn

N
el
=]

20.0 1

\

—e— sequential

—e— parallel-compute

—e— parallel-generate

—e— parallel-compute-generate
—e— parallel-iterative-solve
—e— fully-parallel

2/:*:7’ ——

Number of Threads

13

The graph shows the total
time elapsed with an
increasing number of
threads.

For all parallelized versions
of the algorithm, the elapsed
time decreased,
demonstrating utilization of
the threads.

All algorithms eventually
level out, indicating
diminishing returns with an
excessive number of threads.

Next Steps

What are some future improvements?

14

RESULTS PARALLEL ALGORITHM NONOGRAMS INTRO

NEXT STEPS

Limitations from lterative
Solve

‘—-—h—-—“~ < A
TN | |
[

|
[T N
L[

|

-, |
LI T T T — | | !
U1 W R R SRR RN FVRTTY S OO
T T Y T RN — "
N ST A R— !

Difficulty in parallelizing the main
process of the algorithm —
iterativeSolve.

o The sequential nature of
iterativeSolve makes
parallelization challenging, as
each step depends on the result
of the previous one.

The activity graph does show some
success in parallelizing other parts of
the algorithm: computeBlocksPar
and generateBlocksPar

15

INTRO

RESULTS PARALLEL ALGORITHM NONOGRAMS

NEXT STEPS

Limited use of backtracking

e The puzzles that we ended up testing on were not ambiguous, so backtracking was
not utilized.
e Future Improvements:
o Focus on parallelizing the backtracking part of the algorithm, as multiple
placements can be explored concurrently.
o Prioritize solving smaller nonograms primarily through backtracking.

16

RESULTS PARALLEL ALGORITHM NONOGRAMS INTRO

NEXT STEPS

GC Time

Time Elapsed (s)

25

201

15 1

10 1

GC Time vs Total Time for Parallel Generate

GC Time
MUT Time

< 5 6
Number of Threads

Garbage collection (GC)
takes up as much time as
mutator operations
Explore ways to reduce GC
time, such as using
ParBuffer to help manage
memory usage.

17

Thank You!

