
Nonogram
Solver

Parallel Functional Programming - Fall 2024

By: Dorothy Nelson, Jittisa (Jane) Kraprayoon

N
E

X
T

 S
T

E
P

S
R

E
SU

LT
S

PA
R

A
LL

E
L

A
LG

O
R

IT
H

M
N

O
N

O
G

R
A

M
S

IN
T

R
O

2Index

Intro
Nonograms

Algorithm
Parallelization

Results
Next Steps

02

01

03

04

05

06

3

● A visual puzzle to construct a picture by filling a grid of cells
● Constraints are provided for rows and columns
● Constraints specify how many blocks are consecutively filled.

There must also be a space in-between the blocks.
● Initially every cell is unfilled, and players must make inferences.
● Chosen for their scalable complexity.

Nonograms
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

4

● We collected nonograms from a public github
repo: https://github.com/mikix/nonogram-db

● We categorized puzzles by their sizes (e.g.
10x10 is small, 75x50 is large)

● parseNonogram was used to extract rowArgs

and colArgs (row and column constraints) to be

inputted into our algorithm

Data & Parsing
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

https://github.com/mikix/nonogram-db

5

Our nonogram solver base algorithm can be described in three

parts:

 1) constraint satisfaction

2) iterative inference

3) backtracking for unresolved cases.

Algorithm
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

6

The algorithm begins by iterating through each row and column constraint to compute

possible placements of blocks for each line.

computeBlocksSeq :: Int -> [Int] -> [[Int]]

● takes the total line length and block constraints as inputs. It recursively places blocks

into different start positions and continues with the remaining blocks.

● For example, given lineLength = 7 and lineConstraint = [2, 3], the function would

output [[0, 3], [1, 4]], representing the start positions of the blocks.

generateBlocksSeq :: [[Int]] -> [Int] -> Int -> [[Int]]

● takes the output of computeBlocks—the potential starting positions of the

blocks—and generates a binary array (Ints of 1s and 0s) to represent possible line

configurations.

Possible placements are stored in PlacementsDict and updated at each iteration.

1) Constraint Satisfaction
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

7

Purpose: Iteratively deduce definite cell values based on all possible line configurations.

● The main function is IterativeSolve which calls inferValues and updatePlacements.

IterativeSolve recursively calls itself until the nonogram is solved.

● inferValues: If a cell is filled in all possible configurations, it must be black. If a cell is

unfilled in all possible configurations, it must be white. -1 represents unknowns. Ex.

[[0, 1, 0, 0], [0, 1, 1, 1]] → [[0, 1, -1, -1]]

● After inferValues, we run updatePlacements — prune the search space as some

placements are now not possible

2) Iterative Inference
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

8

Purpose: backtrack Solve ambiguous nonograms with multiple solutions that cannot be

resolved through iterative solving alone.

● Tries different placements within a row.

● Checks if the placement results in a valid grid.

● If it's valid, call backtrack recursively until all rows are completed. This is the base

case of the recursion.

3) Backtracking
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

9Sequential Benchmark
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

Difficulty of nonogram comes not only from the
size, but also how sparse the constraints are.

10

Motivation for Parallelization

● Row and column processing can be done independently.

● Example: Computing starting placements for one row is unaffected by other rows.

Parallelization Strategy

● Control.Parallel.Strategies (parMap, rdeepseq). We parallelized specific

functions contributing to the main algorithm: inferValuesPar, computeBlocksPar,

and generateBlocksPar

Parallelization
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

11

We tested combinations of: inferValuesPar, computeBlocksPar, and

generateBlocksPar

Parallelization
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

12Results
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

Speedup = (Sequential benchmark) / (Shortest time elapsed for algorithm)

Parallel Generate: Achieved the best performance with a 1.88x speed-up.

13Results
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

● The graph shows the total
time elapsed with an

increasing number of

threads.

● For all parallelized versions
of the algorithm, the elapsed

time decreased,

demonstrating utilization of
the threads.

● All algorithms eventually

level out, indicating

diminishing returns with an

excessive number of threads.

14

What are some future improvements?

Next Steps
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

15

● Difficulty in parallelizing the main

process of the algorithm —

iterativeSolve.

○ The sequential nature of

iterativeSolve makes

parallelization challenging, as

each step depends on the result

of the previous one.

● The activity graph does show some

success in parallelizing other parts of

the algorithm: computeBlocksPar

and generateBlocksPar

Limitations from Iterative
Solve

N
E

X
T

 S
T

E
P

S
R

E
SU

LT
S

PA
R

A
LL

E
L

A
LG

O
R

IT
H

M
N

O
N

O
G

R
A

M
S

IN
T

R
O

16

● The puzzles that we ended up testing on were not ambiguous, so backtracking was

not utilized.

● Future Improvements:

○ Focus on parallelizing the backtracking part of the algorithm, as multiple
placements can be explored concurrently.

○ Prioritize solving smaller nonograms primarily through backtracking.

Limited use of backtracking
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

17

● Garbage collection (GC)

takes up as much time as

mutator operations

● Explore ways to reduce GC
time, such as using

ParBuffer to help manage

memory usage.

GC Time
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O

18

Thank You!

