
Mancala Parallelization with Minimax:
A Functional Approach

Parallel Functional Programming

Daniel Manjarrez | Caiwu Chen | Sindhu Krishnamurthy

Fall 2024

Introduction

Rules of the Game
Intro

● Board Layout
○ 12 small pits filled with seeds and 2 stores for

captured seeds
● Player Actions

○ Choose seeds from pits on their side of the board
○ Deposit the seeds one by one counterclockwise

around the board
○ Only deposit seeds in player’s own store
○ If a seed lands on an empty pit on the player’s side,

they capture the seeds in the pit opposite it
○ If the last seed lands in the player’s store, they get

an extra run
○ After a player distributes all seeds from a pit, the

next player takes their round
● Objective

○ End game if all pits on one side of the of the board is
empty

○ Win by collecting the most seeds in your store

● Recursively explore possible game states,
switching between MaximizingPlayer and
MinimizingPlayer

● Evaluate each state using heuristic function
● Scores are propagated up the tree

○ Max nodes select move with max score
○ Min nodes select move with min score

● Best move chosen based on max score at
root node

● Tracks Alpha (MaximizingPlayer's best score)
and Beta (MinimizingPlayer's best score).

● Prunes branches when a move's score is
worse than the current Alpha or Beta.

With Alpha-Beta Pruning

Minimax Algorithm

● Usage: Parallel-Minimax-Mancala <depth>
<parallelDepth>

● The game state begin with 12 pits and each pit contain 4 seeds.
● Minimax use simple heuristic for board evaluation.

○ For Player1: How many more seeds are in Player1’s store
compared to Player2’s store?

○ For Player2: How many more seeds are in Player2’s store
compared to Player1’s store?

● Alpha set to negative infinity while Beta sets to positive infinity.

Details of Implementation

Approach

Sequential Minimax with
Alpha-Beta pruning, then
parallel Minimax past a given
threshold

● Prune early, when it
has most impact!

Initial Approaches

Parallel ->
Sequential Minimax

Sequential ->
Parallel Minimax

Parallel Minimax, then
sequential Minimax with
Alpha-Beta pruning, past a
given threshold

● Parallelize at top levels
with higher branching
factor

Workload-Based
Parallel Minimax

Parallel Minimax when
number of valid moves is
past a certain threshold;
otherwise, sequential
Minimax with Alpha-Beta
pruning

● Only parallelize larger
workloads

A B C

How do we parallelize the Minimax Algorithm?

Tested Approaches

Hybrid Minimax:
Sequential Minimax
for first node at each
level, Parallel Minimax
for sibling nodes

D
Sequential Minimax
with Alpha-Beta
pruning, then parallel
Minimax past a given
threshold

Parallel Minimax, then
sequential Minimax
with Alpha-Beta
pruning, past a given
threshold

Parallel Minimax when
number of valid moves
is past a certain
threshold; otherwise,
sequential Minimax
with Alpha-Beta
pruning

BA C

Chosen Implementation

Young Brothers Wait Concept

● Wait until leftmost node is evaluated first sequentially with alpha-beta
pruning

● Then, remaining nodes are evaluated in parallel using the narrowed bounds
● Lowers overhead from parallelization by still enabling some extent of pruning

D

● When depth>=parallelDepth
○ Process first valid move sequentially

using SeqMinimax to establish initial
alpha-beta bounds

○ Use bounds to process remaining
moves in parallel
■ Recursively call Minimax with

parMap and rdeepseq
○ Combine all results and return best

value
● Otherwise

○ Evaluate all moves sequentially using
SeqMinimax with alpha-beta pruning

○ Select and return best value

Chosen Implementation

Minimax Function SeqMinimax Function

● For each move, recursively call SeqMinimax
with new game state and switched player
to get value

● If maximizingPlayer
○ Update alpha bound with value if

bigger
● If minimizingPlayer

○ Update beta bound with value if
smaller

● If alpha >= beta, return the updated value
(and thereby stop exploring the branch)

● Otherwise, continue exploring remaining
moves in current branch

Performance
Evaluation

Speedup vs. Depth
● As the Depth of the Search Tree

grew so did the speedup
● The increase kept up until it peaked

at a Level 12 Search Tree which
then the speedup began to slowly
decrease as the Search Tree
continued to grow

● Overall, all the different levels of
Search Trees we test benefitted
from a speedup as a result of the
parallelization performed

Speedup vs. Threads

Smaller Search Trees <= Depth 12

A B

Larger Search Trees > Depth 12

Spark Conversion Ratio

Spark Conversion Ratio vs. Search Tree Depth

A B

Spark Conversion Ratio vs. Threads

Threadscope Analysis
● When generating the Threadscope

diagram from our different runs we
found that the Activity between the
different threads used for a given
run was generally well balanced

● Generally from our
experimentation we found that
every thread was typically busy
throughout an entire run,
suggesting that our parallelization
was efficient at dividing the
computational work to allow for
performance improvement

Conclusion
1. Speedup (avg: 3.851003774, max: 5.6986046975)

● The parallel solver achieved an considerable speedup, with a

reasonable depth and threads.

● Speedup increased with search tree depth and thread, and

achieved a peak.

2. Spark Conversion Ratio (avg: 0.2027896166, max: 0.4436936937)

● The average spark conversion increase with the increase usage

of depth and threads.

3. Threadscope Analysis

● Balanced workloads among threads

Thank You!

● https://static.wikia.nocookie.net/newclubpenguin/images/f/ff/Mancala_Layout.png/revision/latest?c
b=20200807100804

● https://museuartesacra.org.br/wp-content/uploads/2020/04/Tabuleiro-Mancala_Sentido-do-jogo_O
K-1024x472.png

● https://www.coolmathgames.com/blog/how-to-play-mancala

Works Cited

https://static.wikia.nocookie.net/newclubpenguin/images/f/ff/Mancala_Layout.png/revision/latest?cb=20200807100804
https://static.wikia.nocookie.net/newclubpenguin/images/f/ff/Mancala_Layout.png/revision/latest?cb=20200807100804
https://museuartesacra.org.br/wp-content/uploads/2020/04/Tabuleiro-Mancala_Sentido-do-jogo_OK-1024x472.png
https://museuartesacra.org.br/wp-content/uploads/2020/04/Tabuleiro-Mancala_Sentido-do-jogo_OK-1024x472.png
https://www.coolmathgames.com/blog/how-to-play-mancala

