
Final Project Proposal: Parallelizing the
Mandelbrot Set

Team Members:
Max Zhang (mz2956)
Isabel Tu (it2334)

Project Name: par-fractal

Project Overview

The Mandelbrot Set is a well-known mathematical set of complex numbers,
defined by the iterative formula:

zn+1 = z2n + c

where c is a complex number and z0 = 0. A point c belongs to the Mandelbrot
Set if the sequence of zn remains bounded (i.e., does not tend to infinity) as
n → ∞.

Visualizing the Mandelbrot Set involves plotting each point in the com-
plex plane and coloring it based on the number of iterations needed for |zn|
to exceed a threshold (usually |z| > 2) or by determining whether it belongs
to the set. The result is a fractal image, where points inside the set are typi-
cally colored black, and points outside are colored according to their ”escape
time.”

This project will focus on parallelizing the computation of Mandelbrot
Set images, leveraging Haskell’s parallel programming constructs. If time
permits, we will extend the implementation to render related fractals, such
as the Julia Set.

Generating Mandelbrot Set Images

To generate an image of the Mandelbrot Set:

1

1. Complex Plane Sampling: Define a grid of points in the complex
plane within a chosen range (e.g., [−2.0, 1.0] for the real axis and
[−1.5, 1.5] for the imaginary axis). The resolution of the grid deter-
mines the image quality.

2. Iteration and Escape Calculation: For each grid point (complex
number c):

• Iterate the formula zn+1 = z2n + c up to a maximum number of
iterations.

• Determine whether zn remains bounded or escapes.

• Assign a color to the point based on its escape time or bounded-
ness.

3. Rendering: Output the computed data as an image.

Parallelization Strategy

We propose the following parallelization strategies using Haskell:

Using Control.Parallel and Control.Parallel.Strategies

• Divide the grid into chunks (e.g., rows or blocks).

• Use par and pseq to evaluate chunks in parallel.

• Employ parListChunk with a suitable evaluation strategy to distribute
computation across cores.

Leveraging REPA (Regular, Shape-Polymorphic Parallel
Arrays)

• Represent the grid as a multidimensional array.

• Use REPA to compute escape times in parallel.

• Take advantage of REPA’s efficient array manipulation and computation
capabilities.

2

Exploring Accelerate for GPU Computation

• If time allows, experiment with Accelerate to offload computation to
a GPU.

• Represent the grid as an array and implement the iteration logic in a
GPU-compatible manner.

Input Data Plan

The input to the algorithm will be:

• Grid Parameters: Resolution (e.g., 1920×1080), real and imaginary
ranges, and maximum iterations.

• Output File Format: The computed data will be written to an image
file format (e.g., PNG or BMP) using Haskell libraries like JuicyPixels.

For the Julia Set, additional parameters such as the constant c for the iter-
ation will be required.

Goals and Scope

1. Deliverable:

• Render the Mandelbrot Set using parallel computation with Control.Parallel
and Control.Parallel.Strategies.

2. Stretch Goals:

• Implement the algorithm using REPA and/or Accelerate.

• Extend the implementation to render the Julia Set.

• Explore visual enhancements such as coloring schemes and high-
resolution outputs.

References

1. https://complex-analysis.com/content/mandelbrot_set.html

3

