Minimum Vertex Cover

Andre Mao (am5994) Minh Hien Tran (mt3854)
Tony Giannini (aug2102)

Fall 2024

1 Introduction

The Minimum Vertex Cover problem is a quintessential NP-Complete problem.
A vertex cover of a graph is a subset of the graph’s vertices such that every
edge in the graph is incident to at least one vertex in this subset. The smallest
subset of vertices that is a vertex cover is the minimum vertex cover.

Most solutions to this problem are brute force solutions where sets of vertices
are built and tested. Although this problem can be solved sequentially, runtime
should be able to be improved by doing set testing and construction in parallel.

2 Objective

We plan to build a solver for the minimum vertex cover that works with undi-
rected graphs with any amount of nodes and any degree of density. Our first
implementation will be purely sequential. Then, we will see what type of per-
formance improvement we can achieve through parallelization.

3 Algorithm

3.1 Overview

To solve the minimum vertex cover, there are a few algorithms that we can test
both in sequential and parallel manners. We aim to deliver both sequential and
parallel implementations of the Brute Force Algorithm for this class. While the
2-Approximation Algorithm and Greedy Heuristic Search are described below,
we plan to implement them in a later iteration of this project.

We will generate graphs of various node counts and densities with a stan-
dalone haskell program. This program will output graphs as edge lists to sep-
arate files. These files will be read by the solver. The solver will construct
adjacency lists from the input and then produce solutions.

3.2 Brute Force Algorithm

We plan to test the Brute Force solution to the Minimum Vertex Cover problem.
Given a graph of vertices and edges, we can construct a set of subsets of size 1
to size |V| and test whether or not the each subset creates a valid vertex cover
as described in this reference project [1]. Since the subsets are in non-decreasing
order the first subset that creates a valid vertex cover, gives us the/a minimum
vertex cover.

There are two parts of this algorithm that lend itself to parallelization. The
first part is the subset construction. Since we are constructing 2!V subsets, it
would make sense to construct these in parallel. We can start by having a spark
created with par for each recursive call. Then we can 'go parallel only to a
certain depth’ to further improve performance by avoiding over-saturating the
system with sparks.

The second part of this algorithm that can be parallelized is the verification.
For each subset, we can run a parallel task see if every edge is attached. Once all
processes are done, the smallest subset that satisfies the property is our answer.
The first stab at parellizing this component can be creating a spark for each
subset with par. Next, we can try to divide the set of subsets into roughly equal
chunks and create a spark for each chunk. A final optimization might be to
terminate work being done on subsets of larger sizes if one with a smaller size
is found to satisfy the property.

3.3 2-Approximation Algorithm

If we hope to further optimize the minimum vertex cover algorithm, we can
utilize the 2-Approximation Algorithm as described in Chapter 35 of [2]. This
algorithm arbitrarily chooses an edge (u, v). Once the edge is chosen, all vertices
connected to v and v are removed from the graph until all vertices are reached.
By implementing this algorithm, it guarantees a minimum vertex cover that is
at most twice the size of the optimal minimum vertex cover in a polynomial-time
algorithm.

The part of this algorithm that lends itself to parallelization is the selection
and subsequent traversal of edges. We can parallelize the selection of the first
edge and the subsequent graph, along with the next selection, and so on and so
forth.

3.4 Greedy Heuristic Search

One last algorithm that could be explored is a greedy heuristic search for the
minimum vertex cover. As described in [1], we can greedily select vertices that
cover the most vertices, as it’s likely that by removing as many vertices as
possible with each selection, we are able to reach the minimum vertex cover in
a more efficient manner.

However, the sequential nature of a greedy search does not lend itself well
to parallelization. Since each choice is affected by the previous choice, it seems

that this approach would not be great to explore in a project like this, although
feedback on this would be much appreciated.

4 References

[1] https://github.com/sedgwicke/VertexCoverSearch
[2] Introduction to Algorithms, 3rd Edition. Cormen, Leiserson, Rivest, Stein.

