
JambaJuice
a small, functional language with modular type inference

Eric Feng, Emily Sillars
Columbia University

{ef2648,ems2331}@columbia.edu

ABSTRACT
We introduce a small, functional programming language equipped
with a prototype modular type inference library, PLCgen, designed
to alleviate the burden on developers from having to implement
their own type inference passes. This library provides an API that
allows developers to specify essential information about their lan-
guage, enabling the automatic generation of type inference routines.

Traditionally, developers have had to invest significant effort in
crafting custom-type inference mechanisms for their programming
languages. This process often involves grappling with the imple-
mentation of complex algorithms, which can be time-consuming
and error-prone. Our proposed library aims to address this chal-
lenge by offering a standardized and reusable solution for type
inference.

By leveraging the API provided by our library, developers can
seamlessly integrate type inference capabilities into their language
implementations. The library harnesses this information to gener-
ate Hindley-Milner typing constraints in Prolog and then utilizes
Prolog’s constraint solver to resolve them. We chose Prolog for
this use case for its succinctness in expressing relevant constraints,
which is helpful for both constraint generation, checking for cor-
rectness, and extending library capabilities. This approach not only
offloads the burden of implementing type inference passes but
also ensures accurate and reliable type inference across different
language features and constructs.

We hope that our prototype modular type inference library
presents a step towards easing the development process for
statically-typed functional programming languages. By providing
a standardized solution for type inference, we hope to empower
developers to focus on language design and implementation, while
reducing the complexity and maintenance overhead associated with
custom type inference passes.

1 JAMBAJUICE LANGUAGE
1.1 Overview
Functional programmers should find the syntax and usage of Jam-
baJuice familiar relative to other functional languages. To gain some
intuition of the language by examining an example program.

jambatime fact n = {
if n == 0 { 1 }
else { n * fact (n - 1) }

}

jambajuice = {

E6998: Types Languages Compilers, ,
2023.

let localFib = fix \localFib -> \b -> (if b == 0
↩→ {1} else {b * localFib (b - 1)}) in {
if (fact 8 > 10)

{ localFib 5 + 10 }
else

{ 8 }
}

}

In the program above, jambajuice and fact are top-level defini-
tions respectively. jambajuice is the key point of entry to Jamba-
Juice programs and as such acts as the “main” function in other
programming languages. Observe that fact is a recursive definition
calculating factorials. Recursive definitions are prepended with the
jambatime keyword with it serving as our version of the familiar
let rec. Let recs are desugared to utilize the fix point operator, which
may also be invoked explicitly, as noted by localFib in jambajuice.
Top-level non-recursive definitions such as jambajuice are simply
top-level let expressions that are desugared into nested lambdas.
Top-level recursive definitions such as fact are let recswhich are sim-
ilarly desugared into nested lambdas, but with a Fix point operator
wrapped around them.

1.2 Core Language
The core language of JambaJuice is based on an extension of the
untyped lambda calculus including the fix point operator, basic base
types (booleans, integers), let expressions, and basic arithmetic op-
erations much like the Poly programming language from Stephen
Diehl’s Write You A Haskell [1]. Unlike Poly, JambaJuice infers
types by generating and solving constraints in Prolog through our
library rather than providing a language-specific implementation
of Hindley Milner inference. We chose Poly as a reference to base
the language features of JambaJuice because it is similar in scope
with respect to the language features we wished to support type
inference for via our library. By using Poly as a reference, we were
able to reuse much of its core logic in the Lexer, Parser, and Eval-
uation modules for JambaJuice’s interpreter, allowing us to focus
most of our attention on our type inference library—with changes
as necessary owing to the differences in user-level syntax between
the two languages and patching small bugs in the reference im-
plementation. With this in mind, JambaJuice programs eventually
desugar to the same core syntax as Poly:
type Var = String

data Expr
= Var Var
| App Expr Expr
| Lam Var Expr

E6998: Types Languages Compilers, , Eric Feng, Emily Sillars

| Let Var Expr Expr
| Lit Lit
| If Expr Expr Expr
| Fix Expr
| Op Binop Expr Expr
deriving (Show, Eq, Ord)

data Lit
= LInt Integer
| LBool Bool
deriving (Show, Eq, Ord)

data Binop = Add | Sub | Mul | Eql | Neq | Lt | Le |

Gt | Ge↩→

deriving (Eq, Ord, Show)

type Decl = (String, Expr)

data Program = Program [Decl] Expr deriving (Show, Eq)

1.3 Implementation
JambaJuice programs are lexed and parsed to the core syntax shown
using Parsec. Afterward, the AST is passed to our library for type
inference and type checking before being interpreted.

The interpreter evaluates expressions in a given environment
(TermEnv) of variable bindings, represented as a Map from vari-
able names to values of type Value. The possible values of the
interpreted language consist of the following:

type TermEnv = Map.Map String Value

data Value
= VInt Integer
| VBool Bool
| VClosure String Expr TermEnv

Where a closure consists of a lambda expression and the envi-
ronment in which it was defined.

To interpret, we take in an expression and an environment, then
evaluate the expression to a value by pattern matching on the appro-
priate type of expression and evaluating relevant subexpressions
recursively. The initial environment of the program is an empty
map, and upon evaluation, we return the resulting value and an
updated environment with the binder bound to the value. The final
value that we present to the user is the value belonging to the “main”
function (keyword jambajuice).

2 HINDLEY-MILNER TO PROLOG
2.1 Overview
We first worked through some examples from Lerner’s type in-
ference notes [3] to gain an intuition of the Hindley Milner type
inference process. For the basis of our formal translation, we use
Edwards’ description of the Hindley-Milner typing rules from lec-
ture [2]. The extraction and insertion of type schemes from/into the
environment gamma Γ are handled by our modular type inference
library, PLCgen. Aside from those parts, each rule translates directly

to Prolog, provided we assume unique type variables assigned to
every node in the source program’s AST, and the following clauses:
arrow([_,_]).
snd(A,B):-A=[H1,H2],B=H2.
fst(A,B):-A=[H1,H2],B=H1.

A function type 𝑇1 → 𝑇2 is represented by a two-element list
validated by the fact "arrow". The output type of a function type
can be extracted using the rule "snd". The input type of a function
type can be extracted using the rule "fst".
hasTypeScheme(F,FORALL,T) :- generalize(F,FORALL,T).

Function F has a type scheme represented by a list of quantified
variables FORALL, and a type T. We can give F this type scheme
provided we can generalize the type T.
generalize(FUNC_I,FORALL,T):- hasType(FUNC_I,T),
include(var,T,FORALL).
generalize(FUNC_I,[],T):-

hasType(FUNC_I,T),T\=[],T\=[H|T].↩→

We can generalize T into a scheme provided it is a type (some func-
tion has type T), and the list of quantified types FORALL contains
the free variables in T.

The filter predicate in Prolog requires lists as input, so we need
a second rule for generalize that creates a degenerate type scheme
from a non-arrow type. Also, an empty list or list of one variable is
never a valid type.
instantiates(Y,F) :- hasTypeScheme(F,FORALL,T),Y=T.

Type Y instantiates type scheme F provided its type unifies with T.

2.2 Application

We construct a general App AST node with unique type variables
for each subnode:
(App (e1 :: X1) (e2 :: X2)) :: X3

To apply the app rule, the type of 𝑒1 must be a function type, and
the input type of 𝑒1 must be the type of 𝑒2. Then we can conclude
the type of 𝑒1 𝑒2 is the return type of 𝑒1.

Prolog translation:
arrow(X1),
fst(X1,X2),
snd(X1,X3).

2.3 Lambda Abstraction

We construct a general Lambda AST node with unique type
variables for each subnode:
(Lam (Var "x" :: X1) (e :: X2)) ::X3

JambaJuice E6998: Types Languages Compilers, ,

Using the abs rule, we say that given a binder "x" of type X1 and a
body expression e of type X2, we can conclude a lambda abstraction
with binder "x" and body e has type 𝑋1 → 𝑋2.

Prolog Translation:
arrow(X3),
fst(X3,X1),
snd(X3,X2).

2.4 Let

We construct a general Let AST node with unique type variables
for each subnode:
(Let ((Var "x") :: X1) (e1 :: X2) (e2 :: X3)) :: X4

Using the let rule, we can say that provided 𝑒1 has type X2, the
binder "x" has a type scheme formed from the generalization of X2,
and 𝑒2 has type X3, the lambda abstraction node containing binder
"x", binder value 𝑒1, and body 𝑒2 has the type of its body.

Prolog translation:
X1 = X2,
X4 = X3.

Note that the generalization step corresponds to a PLCgen internal
function call that inserts a type scheme into the current environ-
ment. See section 3 for more details.

2.5 Var

We construct a general Var AST node with a unique type variable:
(Var "x") :: X5

The var rule says that if binder "x" has type scheme 𝜎 in the envi-
ronment, we can assign a Var node containing binder "x" the type
X1, where X5 instantiates the type scheme 𝜎 .

When the interpreter encounters a var node in its source pro-
gram’s AST, it calls the PLCgen API function genVar. This function
looks up "x" in the environment, and generates the following Prolog
constraints in each case:

(1) binder "x" refers to a let binder (has a type scheme)
There exists a let expression of the form
(Let ((Var "x") :: X1) (e1 :: X2) (e2 :: X3)) ::

X4↩→

so our instance of binder "x" must have a type that instanti-
ates the scheme associated with type X1.
Prolog Translation:
copy_term(X1,X5).
Note that copy_term is a built-in predicate in SWI Prolog
that creates a copy of its left argument with fresh variables,
and then unifies this copy with the right argument.

(2) binder "x" refers to a lambda binder (has a type)
There exists a lambda expression of the form
(Lam (Var "x" :: X1) (e :: X2)) ::X3
so our instance of binder "x" must have a type that instan-
tiates the degenerate scheme (type) associated with type
X1.
Prolog Translation:
X5 = X1.

(3) binder "x" refers to a top-level function (has a type scheme)
If binder "x" refers to some top-level function, there exists
a compound term in our Prolog knowledge base such that
function x has some type. Our instance of binder "x" must
instantiate this function’s type scheme.
Prolog translation:
instantiates(X5, x).

2.6 Extending with Recursion
To extend our Hindley-Milner type system with recursion, we use
the fixed point operator typing rules described by Pierce in [4].

T-Fix says that provided an expression 𝑡1 has type 𝑇1 → 𝑇1,
The fixed point of 𝑡1 has type 𝑇1. Note that this rule requires the
argument of fix be a lambda abstraction (or potentially a data con-
structor).

The derived forms illustrate explicitly that the argument to Fix
is also a special lambda expression in which the binder is the name
of the recursive function being defined.

We construct a general Fix AST node:
(fix (Lam (Var "x")::X1 e :: X2)::X3)::X4

Using the T-Fix rule, the expression 𝑡1 corresponds to (Lam (Var
"x")::X1 e :: X2)::X3.

Prolog translation:
arrow(X1),
snd(X3,X4).

Using "fst" instead of "snd" here would work just as well.

3 MODULAR TYPE INFERENCE
We define a modular type inference library in Haskell called PLCgen
(short for Prolog Constraint Generation). The goal of this library
is to perform Hindley-Milner type inference for any functional
language interpreted or compiled with Haskell.

Given some basic language-specific and program-specific infor-
mation from the source language interpreter, PLCgen generates a
corresponding Prolog knowledge base, queries it to find the type of
each node in the source program’s AST, and returns the results.

Current limitations of our library include a lack of support for
Algebraic Data Types and name shadowing.

E6998: Types Languages Compilers, , Eric Feng, Emily Sillars

3.1 ASTs as a Universal Connection
To give PLCgen a common interface to interact with any source
language, we rely on the user providing PLCgen with unique node
numbers for ever node in their source program’s abstract syntax
tree. Once PLCgen is given these node numbers, it creates a table
from node ID number to unique type variable that it maintains
throughout the constraint generation process.

3.2 User API
Each user API function modifies PLCgen’s internal state in some
way. This internal state is outlined in more detail in the next section,
but the most relevant information for users to be aware of when
harnessing the API is

(1) Top-level functions are processed one at a time
(2) The library must know about all nodes in the program before

starting to process any function
(3) Per-node API calls should be performed as part of an AST

traversal
(4) The library’s internal state keeps track of the Hindley-Milner

typing environment Γ.
Examples of per-node API Functions

• enterApp :: NodeID -> NodeID -> NodeID -> PLC ()
Generates Prolog constraints for an App AST node

• enterLet :: NodeID -> String -> NodeID -> NodeID
-> NodeID -> PLC ()
Generates Prolog constraints for a Let AST node

• genFix :: NodeID -> NodeID -> NodeID -> PLC ()
Generates Prolog constraints for a Fix AST node

• genVar :: String -> NodeID -> PLC ()
Generates Prolog constraints for a Var AST node

In addition to functions that generate Hindley-Milner constraints
for basic AST nodes, we provide two general API calls the user can
use to add custom language features and typing rules to PLCgen’s
type inference system.

(1) unifyNodeWithType NodeID -> String -> PLC ()
Retrieves the type variable associated with the given NodeID
and unifies it with a built-in type.

(2) unifyNodeWithNode NodeID -> NodeID -> PLC ()
Retrieves the type variables associated with the given IDs
and unifies them.

Our JambaJuice interpreter takes advantage of these API functions
to type check its if-else and Op nodes.

3.3 Internal State
PLCgen maintains a state consisting of language-specific informa-
tion (built-in functions), and program-specific information (the
node IDs associated with each node in the source program’s AST,
the Prolog constraints associated with the source program). It also
keeps track of temporary function-specific information, as PLCgen
generates constraints for top-level functions one at a time.

Function-specific information includes the set of all node IDs cor-
responding to the current function’s subtree, the Prolog constraints
associated with this function, and a lookup table from variable
names to pertinent variable information(specifically, whether the
binder was introduced by a let expression, lambda expression, or

refers to a top-level function, and with the former two cases, the
node ID of the node in which the binder was first introduced).

When PLCgen concludes constraint generation for a top-level
function (sparked by the exitFunc user API call), it appends all
the function-specific constraints to its set of program-specific con-
straints.

Once all functions have been processed, PLCgen dumps its pro-
gram constraints into a Prolog file, prefixed by the helper con-
straints described in section 2.1, and concluded with the line

:- initialization
forall((hasType(X,Y),not(isTopLevelDef(X))),
(write(X),write(' '), writeln(Y))),halt().

↩→

↩→

which automatically prints the results of type inference upon
loading the knowledge base.

3.4 Backend
After generating the source program’s corresponding Prolog file,
PLCgen spawns a swipl Prolog process to load and query the knowl-
edge base. The swipl Prolog output is piped back into PLCgen,
which then parses the plain text results into a map from NodeIDs
to Types, where

type NodeID = Integer
data Type = String | Arrow Type Type

If the size of the results table is the same size as the node Id to
type variable table from PLCgen’s internal state, the program type
checks. Finally, the results table is returned to the user along with
a notice of success or failure.

4 FUTUREWORK
The JambaJuice programming language and library are prototypes
demonstrating the usage of modular type inference with respect to
our library. With that in mind, there are many potential areas for
future work and improvement. Some examples include:

• Language Extensions: Expanding the core language of Jam-
baJuice by introducing new language constructs such as
algebraic data types and case expressions.

• Extending Core Library Functionality: Add user API
calls to support typing algebraic data types. Improve
upon and add to the general API function calls that
allow users to introduce custom language features/-
typing rules. For example, NodeInstantiatesNode and
NodeInstantiatiesTypeScheme function calls could be
helpful.

• Optimizing Performance: Currently, our library generates
prolog constraints that can take a noticeable amount of time
to solve depending on the source program. This suggests
our generated prolog files are not realistic for larger, more
complex programs. Investigating optimization techniques
for prolog constraint generation/solving may enhance the
efficiency and scalability of our library.

• Better Error Messages: To make PLCgen a feasible tool to in-
corporate into interpreters and compilers, specific error mes-
sages about the cause of type-checking failure are needed.

JambaJuice E6998: Types Languages Compilers, ,

5 CONCLUSION
Our simple functional language, JambaJuice, demonstrates how the
implementation of type inference in functional languages may be
simplified using our modular type inference library. By providing
a modular approach and leveraging Hindley Milner typing con-
straints along with Prolog’s constraint solver, the library offloads
the burden on developers to write custom-type inference passes.
By leveraging our library’s API, developers may focus more on
language design and implementation, while still ensuring accurate
and reliable type inference results.

REFERENCES
[1] Stephen Diehl. 2015. Write You A Haskell. https://smunix.github.io/dev.

stephendiehl.com/fun/index.html
[2] Stephen A. Edwards. 2023. The Hindley-Milner Type System. http://www.cs.

columbia.edu/~sedwards/classes/2023/6998-spring-tlc/hindleymilner.pdf
[3] Benjamin Lerner. 2019. Lecture 11: Type Inference. https://course.ccs.neu.edu/

cs4410sp19/lec_type-inference_notes.html
[4] Benjamin C. Pierce. 2007. Types and Programming Languages. The MIT Press.

APPENDIX
(Continued on the next page in single column format)

https://smunix.github.io/dev.stephendiehl.com/fun/index.html
https://smunix.github.io/dev.stephendiehl.com/fun/index.html
http://www.cs.columbia.edu/~sedwards/classes/2023/6998-spring-tlc/hindleymilner.pdf
http://www.cs.columbia.edu/~sedwards/classes/2023/6998-spring-tlc/hindleymilner.pdf
https://course.ccs.neu.edu/cs4410sp19/lec_type-inference_notes.html
https://course.ccs.neu.edu/cs4410sp19/lec_type-inference_notes.html

E6998: Types Languages Compilers, , Eric Feng, Emily Sillars

An example JambaJuice Program
jambatime g x = {

g x
}

jambajuice = {
let id = \x -> x in {

if (id true) {id 4} else {id 7}
}

}

Generated Prolog Constraints
%%%
%% these predicates should be at the top of every typechecking file %%

use_module(library(apply)). % to import include
:- discontiguous hasType/2. % ignore discontiguous warnings
:- discontiguous hasTypeScheme/3. % ignore discontiguous warnings
:- discontiguous isTopLevelDef/1. % ignore discontiguous warningsgit
:- style_check(-singleton). % ignore singleton var warnings

% generate a type scheme for a top level definition if possible
hasTypeScheme(F, FORALL, T) :- generalize(F, FORALL, T).

% convert the type of a top level definition into a type scheme
generalize(FUNC_I, FORALL, T):- hasType(FUNC_I, T), include(var, T, FORALL).
generalize(FUNC_I, [], T):- hasType(FUNC_I, T), T\=[], T\=[H|T].

% convert the type scheme of a top-level definition into a type
instantiates(Y,F) :- hasTypeScheme(F, FORALL, T), Y=T.
% we use copy_term/2 to instantiate the type scheme of a local definition (let bindings)

% helper constraints
arrow([_,_]).
snd(A,B):-A=[H1,H2],B=H2.
fst(A,B):-A=[H1,H2],B=H1.
%% %%
%%%
g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7):-(snd(X1,X0),arrow(X2),arrow(X1),fst(X1,X2),snd(X1,X3),X2=X2,arrow(X3),fst(X3,X4),
snd(X3,X5),X4=X4,arrow(X6),fst(X6,X7),snd(X6,X5),X6=X2,X7=X4).
hasType(g , X0):-g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7).
isTopLevelDef(g).
hasType(node_0 , X0):-g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7).
hasType(node_1 , X1):-g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7).
hasType(node_2 , X2):-g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7).
hasType(node_3 , X3):-g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7).
hasType(node_4 , X4):-g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7).
hasType(node_5 , X5):-g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7).
hasType(node_6 , X6):-g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7).
hasType(node_7 , X7):-g_typechecks(X0,X1,X2,X3,X4,X5,X6,X7).
jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22):-(X9=X10,X8=X13,arrow(X10),fst(X10,X11),
snd(X10,X12),X11=X11,X12=X11,X14=bool,X17=X20,X13=X17,X13=X20,arrow(X15),
fst(X15,X16),snd(X15,X14),X16=bool,arrow(X18),fst(X18,X19),snd(X18,X17),X19=int,
arrow(X21),fst(X21,X22),snd(X21,X20),X22=int,copy_term(X9,X9),copy_term(X9,X15),
copy_term(X9,X18),copy_term(X9,X21)).
hasType(jambajuice , X8):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).

JambaJuice E6998: Types Languages Compilers, ,

isTopLevelDef(jambajuice).
hasType(node_8 , X8):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_9 , X9):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_10 , X10):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_11 , X11):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_12 , X12):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_13 , X13):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_14 , X14):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_15 , X15):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_16 , X16):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_17 , X17):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_18 , X18):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_19 , X19):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_20 , X20):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_21 , X21):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).
hasType(node_22 , X22):-jambajuice_typechecks(X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22).

% output results of typechecking!
:- initialization forall((hasType(X,Y),not(isTopLevelDef(X))), (write(X),write(' '), writeln(Y))),halt().

Type Inference Results
node_0 [_2538,_2544] %% the type of function g
node_1 [[_2538,_2544],[_2538,_2544]] %% the type of the argument to Fix, (\g -> (\x -> g x))
node_2 [_2538,_2544]
node_3 [_2540,_2546]
node_4 _2436
node_5 _2436
node_6 [_2540,_2546]
node_7 _2436
node_8 int
node_9 [_2524,_2524] %% the type of id inside of the Let
node_10 [_2524,_2524]
node_11 _2436
node_12 _2436
node_13 int
node_14 bool
node_15 [bool,bool] %% the type of id inside (id true)
node_16 bool
node_17 int
node_18 [int,int] %% the type of id inside (id 4)
node_19 int
node_20 int
node_21 [int,int] %% the type of id inside (id 7)
node_22 int

	Abstract
	1 JambaJuice Language
	1.1 Overview
	1.2 Core Language
	1.3 Implementation

	2 Hindley-Milner to Prolog
	2.1 Overview
	2.2 Application
	2.3 Lambda Abstraction
	2.4 Let
	2.5 Var
	2.6 Extending with Recursion

	3 Modular Type Inference
	3.1 ASTs as a Universal Connection
	3.2 User API
	3.3 Internal State
	3.4 Backend

	4 Future Work
	5 Conclusion
	References

