
TLC Spring 2023 - Graph Invariants with Dependent Types

Yiwei Wu Raphael Sofaer

12 May 2023

1 Introduction

Graphs are a common data structure in both prac-
tical Software Engineering and in Computer Science.
This abstraction consists of a set of nodes and a set
of edges linking those nodes. Many algorithms exist
for extracting data from graphs, constructing paths
in graphs, dividing graphs into subgraphs, find max-
flows through graphs, and more. Many real-world
data sets such as cartographic maps, social networks,
academic citations, and program control flow can be
represented as graphs. These practical graphs often
attach complex data in the form of annotations to
nodes and edges, and have delicate structures which
must be understood by a programmer who is extract-
ing data.

Unfortunately, while the basic graph data structure
and many elaborations of it such as hypergraphs and
multigraphs have been explored in detail, we still lack
the tools to enforce constraints on the graph struc-
ture specific to a given application. At best, extract-
ing data from a complex graph format depends on
informal documentation and experimentation.

We propose and demonstrate a novel technique
for the enforcement of local and global structural
graph invariants using dependent types, and provide
a demonstration of this technique using an adjacency
list graph implementation.

2 Background

Any program which extracts data from a graph via
traversal depends on the graph having a particu-
lar structure. Consider a graph of user-network in-
teractions on a telecom network [Hua(2023)]. This
graph consists of four node types: user, package,
app, and cell, and 3 edge types: user-buy-package,
user-use-app, and user-live-cell. One seemingly sim-
ple question may be, is a user who buys a certain
package more likely to have a certain type of cell
phone? We can traverse from package nodes to user
nodes, then to cell nodes, in order to extract tabular
data on which we can calculate our desired statistics.

However, in order to write that code we must know
whether a user who buys a package is guaranteed to
have used a cell phone. Even if in the data file we are
currently considering, all users nodes are connected
to cell nodes, that may not be the case in the next
data set we receive.

Dependent types provide a possible solution to this
problem. A function extracting data from a graph
may be written to operate on a graph type augmented
with the structural invariants that the function de-
pends on. Since a dependent type system allows any
term to be made a condition of a type, any invariant
may be incorporated into a type-level constraint. In
the above case, the code providing the graph would
define a type which incorporates the invariant that
ensures the traversals made in the functions are valid.
In this case, the invariant would ensure that every
user with a user-buy-package edge has a user-live-cell
edge.

3 Implementation

3.1 Pi-Forall

We implement our proposal using Pi-ForAll, a learn-
ing language implemented as only a type checker
by Professor Stephanie Weirich [Weirich(2022)]. Pi-
Forall consists of a dependent type checker, but no
evaluator. We implement the Sigma types described
in the Pi-ForAll paper (already present in the full

reference implementation), and implement a con-
strained graph type.

3.2 Added Sigma Type Rules

We implement the sigma rules in the
Pi-ForAll paper in bidirectional style
in the version1/src/TypeCheck.hs

file [Sofaer and Wu(2023)]. To avoid any er-
rors, we use the provided type checker in
full/src/TypeCheck.hs to typecheck the graph
types describe below.

1

3.3 Design

A constrained graph type must contain 3 pieces:
First, the graph itself. Second, the constraint. Fi-
nally, a proof that the constraint is met. In addition,
because we use an n-sized vector type for our graph,
we have a fourth piece of data, the number of nodes
n. Since the proof must be able to refer to all previ-
ous pieces of the type, pi-forall requires us to use an
indexed sigma type.

data Graph (n : Nat) : Type where
G o f (Vec (L i s t Node) n)

GraphConstraint : Type
GraphConstraint = [n : Nat]

−> Graph n −> Bool

ConstrainedGraph : Type
ConstrainedGraph = { n : Nat | − − s i z e

{ g : Graph n |
{ con : GraphConstraint |

con [n] g = True − − proo f
}}}

3.4 Proof

We provide a proof confirming that the type above
requires the constraint to evaluate to True for
the graph it is paired with. We omit the def-
initions of con_graph_con, con_graph_graph and
con_graph_size, which extract the pieces of the
ConstrainedGraph sigma type. For these definitions,
please refer to Graph.pi

con graph proo f : (cg : ConstrainedGraph)
−> (con graph con cg)

[c on g raph s i z e cg]
(con graph graph cg) = True

con graph proo f = \ cg .
l e t (n , wrapped g) = cg in

l e t (g , con ’) = wrapped g in
l e t (con , proo f) = con ’ in

proo f

3.5 Examples

To test this definition, we constructed three exam-
ples of growing complexity. First, we constrain a
graph to have at least one node. Second, we con-
strain a graph to have all nodes in the graph have
degree at least 1. Third, we constrain a graph to
have no self-edges. Finally, we constrain a graph
to be in topological order, and therefore be acyclic.

See Appendix 1 5 for the code, or see the code on
Github [Sofaer and Wu(2023)].

4 Conclusion

In this paper we describe a method for using depen-
dent types to construct and enforce arbitrary local or
global constraints on graphs. We provide examples of
using this method for simple local and global graph
invariants. To the best of our knowledge, no open
source libraries exist implementing graph constraints
using dependent types1.

Further work, if pursued, would re-implement the
types in a practical dependently typed language such
as Idris, and provide matching graph algorithms and
constrained types. An acceptable open source graph
library would support directed and undirected graphs
with annotations on both nodes and edges. In addi-
tion, it would provide an interface for defining and
combining constraints in a manner amenable to type
checking.

1A thesis topic was started in 2018 on the subject but no
published work was found [fun(2023)].

2

References

[Hua(2023)] 2023. SNAP: Telecom Graph. https:

//snap.stanford.edu/data/telecom-graph.

html [Online; accessed 11. May 2023].

[fun(2023)] 2023. Universität Tübingen - Implement-
ing functional graph algorithms in a dependently
typed language. https://ps.informatik.

uni-tuebingen.de/teaching/thesis/2018/

05/30/idris-graph-algos [Online; accessed
11. May 2023].

[Sofaer and Wu(2023)] Raphael Sofaer and Yiwei
Wu. 2023. pi-forall with constrained graphs.
https://github.com/rsofaer/pi-forall/

blob/tlc_spring_2023/full/pi/Graph.pi

[Online; accessed 11. May 2023].

[Weirich(2022)] Stephanie Weirich. 2022. Imple-
menting Dependent Types in pi-forall. arXiv
(July 2022). https://doi.org/10.48550/

arXiv.2207.02129 arXiv:2207.02129

3

https://snap.stanford.edu/data/telecom-graph.html
https://snap.stanford.edu/data/telecom-graph.html
https://snap.stanford.edu/data/telecom-graph.html
https://ps.informatik.uni-tuebingen.de/teaching/thesis/2018/05/30/idris-graph-algos
https://ps.informatik.uni-tuebingen.de/teaching/thesis/2018/05/30/idris-graph-algos
https://ps.informatik.uni-tuebingen.de/teaching/thesis/2018/05/30/idris-graph-algos
https://github.com/rsofaer/pi-forall/blob/tlc_spring_2023/full/pi/Graph.pi
https://github.com/rsofaer/pi-forall/blob/tlc_spring_2023/full/pi/Graph.pi
https://doi.org/10.48550/arXiv.2207.02129
https://doi.org/10.48550/arXiv.2207.02129

5 Appendix 1: Example Graph Code

hasNodeCon : GraphConstraint
hasNodeCon = \ [n] g . case g o f

G v −> case v o f
Ni l −> False
Cons [a] h t l −> True

cg s imp l e s t : ConstrainedGraph
cg s imp l e s t = (1 , (G (Cons [0] (Ni l) Ni l) , (hasNodeCon , Re f l)))
c g s im p l e s t f a i l : ConstrainedGraph
c g s im p l e s t f a i l = (0 , (G (Ni l) , (hasNodeCon , Re f l)))

degreeOneCon ’ : [n : Nat] −> Vec (L i s t Node) n −> Bool
degreeOneCon ’ = \ [n] v . case v o f

Ni l −> True
Cons [m] h t l −> case h o f

Ni l −> False
Cons l s t h l s t t l −> degreeOneCon ’ [m] t l

degreeOneCon : GraphConstraint
degreeOneCon = \ [n] g . case g o f

G v −> degreeOneCon ’ [n] v

cg degOne : ConstrainedGraph
cg degOne= (1 , (G (Cons [0] (Cons 0 Ni l) Ni l) , (degreeOneCon , Re f l)))
cg degOneEmpty : ConstrainedGraph
cg degOneEmpty = (0 , (G (Ni l) , (degreeOneCon , Re f l)))
cg degOneFai l : ConstrainedGraph
cg degOneFai l = (1 , (G (Cons [0] (Ni l) Ni l) , (degreeOneCon , Re f l)))

noSel fEdgeConstra int ’ : [n : Nat] −> Vec (L i s t Node) n −> Nat −> Bool
noSel fEdgeConstra int ’ = \ [n] v idx . case v o f

Ni l −> True
Cons [m] h t l −> i f c on ta in s na t h idx then Fal se

e l s e noSel fEdgeConstra int ’ [m] t l (Succ idx)

noSe l fEdgeConstra int : GraphConstraint
noSe l fEdgeConstra int = \ [n] g . case g o f
G v −> noSel fEdgeConstra int ’ [n] v Zero

cg noSe l fEdge : ConstrainedGraph
cg noSe l fEdge = (2 , (G (Cons [1] (Cons 1 Ni l) (Cons [0] (Cons 0 Ni l) Ni l)) ,

(noSe l fEdgeConstra int , Re f l)))

c g s e l fEdg eFa i l : ConstrainedGraph
cg s e l fEdg eFa i l = (1 , (G (Cons [0] (Cons 0 Ni l) Ni l) ,

(noSe l fEdgeConstra int , Re f l)))

− − Topo l og i c a l l y so r t ed and th e r e f o r e a c y c l i c
a c y c l i cCon s t r a i n t S i n g l e : [n : Nat] −> Nat −> L i s t Node −> Bool
a c y c l i cCon s t r a i n t S i n g l e = \ [n] idx l s t . case l s t o f

Ni l −> True
Cons h t l −> case gt h idx o f

True −> a cy c l i cCon s t r a i n t S i n g l e [n] idx t l

4

False −> False

a cyc l i cCons t r a in t ’ : [n : Nat] −> Vec (L i s t Node) n −> (idx : Nat) −> Bool
a cyc l i cCons t r a in t ’ = \ [n] v idx . case v o f

Ni l −> True
Cons [m] h t l −> i f a c y c l i cCon s t r a i n t S i n g l e [n] idx h

then acyc l i cCons t r a in t ’ [m] t l (Succ idx)
e l s e Fa l se

a cy c l i cCon s t r a i n t : GraphConstraint
a cy c l i cCon s t r a i n t = \ [n] g . case g o f
G v −> acyc l i cCons t r a in t ’ [n] v Zero

− − Example o f an a c y c l i c Graph
c g a c y c l i c : ConstrainedGraph
c g a c y c l i c = (2 , (G (Cons [1] (Cons 1 Ni l) (Cons [0] (Ni l) Ni l)) ,

(a cyc l i cCons t r a in t , Re f l)))

− − Example o f a c y c l i c graph
c g c y c l i c : ConstrainedGraph
c g c y c l i c = (2 , (G (Cons [1] (Cons 0 Ni l) (Cons [0] (Cons 1 Ni l) Ni l)) ,

(a cyc l i cCons t r a in t , Re f l)))

5

	Introduction
	Background
	Implementation
	Pi-Forall
	Added Sigma Type Rules
	Design
	Proof
	Examples

	Conclusion
	Appendix 1: Example Graph Code

