
Strings and Regular Expressions

Stephen A. Edwards

Columbia University

Spring 2023

[^]*?@[^]*?\.[^]*

Alphabets, Strings, and the Empty String
An alphabet Σ is a �nite set of symbols.
Strings over Σ are members of Σ∗, de�ned by

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

Judgments: c ∈ Σ “character in Σ” s ∈ Σ∗ “sequence of zero or more characters”
Variables: c “character” s “sequence”
Symbols: “ ” “start and end of a string”

If Σ = {a, b, c, … , z},
“” The empty string

epsilon
“” ∈ Σ∗

Alphabets, Strings, and the Empty String
An alphabet Σ is a �nite set of symbols.
Strings over Σ are members of Σ∗, de�ned by

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

Judgments: c ∈ Σ “character in Σ” s ∈ Σ∗ “sequence of zero or more characters”
Variables: c “character” s “sequence”
Symbols: “ ” “start and end of a string”

If Σ = {a, b, c, … , z},
“” The empty string
“a” The string consisting of just “a”

a ∈ Σ
epsilon

“” ∈ Σ∗
char

“a” ∈ Σ∗
← Choose s to be the empty sequence

Alphabets, Strings, and the Empty String
An alphabet Σ is a �nite set of symbols.
Strings over Σ are members of Σ∗, de�ned by

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

Judgments: c ∈ Σ “character in Σ” s ∈ Σ∗ “sequence of zero or more characters”
Variables: c “character” s “sequence”
Symbols: “ ” “start and end of a string”

If Σ = {a, b, c, … , z},
“” The empty string
“a” The string consisting of just “a”
“ba” The string consisting of “b” followed by “a”

b ∈ Σ
a ∈ Σ

epsilon
“” ∈ Σ∗

char
“a” ∈ Σ∗

char
“ba” ∈ Σ∗

← Prepend characters from right to left

Alphabets, Strings, and the Empty String
An alphabet Σ is a �nite set of symbols.
Strings over Σ are members of Σ∗, de�ned by

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

Judgments: c ∈ Σ “character in Σ” s ∈ Σ∗ “sequence of zero or more characters”
Variables: c “character” s “sequence”
Symbols: “ ” “start and end of a string”

If Σ = {a, b, c, … , z},
“” The empty string
“a” The string consisting of just “a”
“ba” The string consisting of “b” followed by “a”
“aba” The string “a” followed by “b” followed by “a”
“abcd” The four-letter string “abcd”
“sphinxofblackquartzjudgemyvow” A pangram with only a, o, and u repeated

Alphabets, Strings, and the Empty String
An alphabet Σ is a �nite set of symbols.
Strings over Σ are members of Σ∗, de�ned by

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

infixr 5 : -- Not legal Haskell a : b : c = a : (b : c)
data [a] = [] -- [] is the empty list “a” is a type variable

 | a : [a] -- : is the list “cons” or prepend operator

type String = [Char] -- In Haskell, strings are lists of characters

"Hello" -- shorthand for
'H' : 'e' : 'l' : 'l' : 'o' : []

�

a

aa

aaa
aaaa

baaa

baa
abaa

bbaa

ba

aba
aaba

baba

baa
abba

bbba

b

ab

aab
aaab

baab

bab
abab

bbab

bb

abb
aabb

babb

bab
abbb

bbbb

A visualization of the Peano encoding of natural numbers � = 0 a = successor

�

a

aa

aaa
aaaa

baaa

baa
abaa

bbaa

ba

aba
aaba

baba

baa
abba

bbba

b

ab

aab
aaab

baab

bab
abab

bbab

bb

abb
aabb

babb

bab
abbb

bbbb

Strings over a two-character alphabet
Two “successor” functions:
one per character

a

b

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Equality

equal-epsilon
“” = “”

c ∈ Σ “s1” = “s2” equal
“cs1” = “cs2”

Judgments: “s1” = “s2” “Strings “s1” and “s2” are equal”
Variables: s1, s2 “character sequence” c “character”

Is “ab” = “ab”?

a ∈ Σ

b ∈ Σ

equal-epsilon

“” = “”
equal

“b” = “b”
equal

“ab” = “ab”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Equality

equal-epsilon
“” = “”

c ∈ Σ “s1” = “s2” equal
“cs1” = “cs2”

Judgments: “s1” = “s2” “Strings “s1” and “s2” are equal”
Variables: s1, s2 “character sequence” c “character”

Is “ab” = “ab”?

a ∈ Σ

b ∈ Σ

equal-epsilon

“” = “”
equal

“b” = “b”
equal

“ab” = “ab”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Equality

equal-epsilon
“” = “”

c ∈ Σ “s1” = “s2” equal
“cs1” = “cs2”

Judgments: “s1” = “s2” “Strings “s1” and “s2” are equal”
Variables: s1, s2 “character sequence” c “character”

Is “ab” = “ab”?

a ∈ Σ
b ∈ Σ

equal-epsilon

“” = “”
equal

“b” = “b”
equal

“ab” = “ab”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Equality

equal-epsilon
“” = “”

c ∈ Σ “s1” = “s2” equal
“cs1” = “cs2”

Judgments: “s1” = “s2” “Strings “s1” and “s2” are equal”
Variables: s1, s2 “character sequence” c “character”

Is “ab” = “ab”?

a ∈ Σ
b ∈ Σ

equal-epsilon
“” = “”

equal
“b” = “b”

equal
“ab” = “ab”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Equality

equal-epsilon
“” = “”

c ∈ Σ “s1” = “s2” equal
“cs1” = “cs2”

Judgments: “s1” = “s2” “Strings “s1” and “s2” are equal”
Variables: s1, s2 “character sequence” c “character”

Is “ab” = “ac”?

a ∈ Σ

? ← We are stuck: the equal rule requires identical initial characters?

“b” = “c”
equal

“ab” = “ac”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Equality

equal-epsilon
“” = “”

c ∈ Σ “s1” = “s2” equal
“cs1” = “cs2”

Judgments: “s1” = “s2” “Strings “s1” and “s2” are equal”
Variables: s1, s2 “character sequence” c “character”

Is “ab” = “ac”?

a ∈ Σ

? ← We are stuck: the equal rule requires identical initial characters
?

“b” = “c”
equal

“ab” = “ac”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Equality

equal-epsilon
“” = “”

c ∈ Σ “s1” = “s2” equal
“cs1” = “cs2”

Judgments: “s1” = “s2” “Strings “s1” and “s2” are equal”
Variables: s1, s2 “character sequence” c “character”

Is “ab” = “ac”?

a ∈ Σ
? ← We are stuck: the equal rule requires identical initial characters

?
“b” = “c”

equal
“ab” = “ac”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Equality

equal-epsilon
“” = “”

c ∈ Σ “s1” = “s2” equal
“cs1” = “cs2”

Judgments: “s1” = “s2” “Strings “s1” and “s2” are equal”
Variables: s1, s2 “character sequence” c “character”

Additional Theorems
Re�exive: For any s ∈ Σ∗, s = s
Symmetric: For any s1, s2 ∈ Σ∗ with s1 = s2, s2 = s1.
Transitive: For any s1, s2, s3 ∈ Σ∗ with s1 = s2 and s2 = s3, s1 = s3.

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Equality

equal-epsilon
“” = “”

c ∈ Σ “s1” = “s2” equal
“cs1” = “cs2”

Judgments: “s1” = “s2” “Strings “s1” and “s2” are equal”
Variables: s1, s2 “character sequence” c “character”
(==) :: [Char] -> [Char] -> Bool

 [] == [] = True -- equal-epsilon
c1 : s1 == c2 : s2 = c1 == c2 && s1 == s2 -- equal

 _ == _ = False -- default case

data [a] = [] | a : [a] deriving (Eq, Ord) -- Default implementation of Eq

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Concatenation
“s” ∈ Σ∗

concat-epsilon
“” ++ “s” = “s”

c ∈ Σ “s1” ++ “s2” = “s3” concat
“cs1” ++ “s2” = “cs3”

Judgments: “s1” ++ “s2” = “s3” “Concatenating strings “s1” and “s2” gives string “s3””
Variables: s, s1, s2, s3 “character sequence” c “character”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Concatenation
“s” ∈ Σ∗

concat-epsilon
“” ++ “s” = “s”

c ∈ Σ “s1” ++ “s2” = “s3” concat
“cs1” ++ “s2” = “cs3”

Is “ab” ++ “cde” = “abcde”?

a ∈ Σ

b ∈ Σ

c ∈ Σ

d ∈ Σ

e ∈ Σ

epsilon

“” ∈ Σ∗
char

“e” ∈ Σ∗
char

“de” ∈ Σ∗
char

“cde” ∈ Σ∗
concat-epsilon

“” ++ “cde” = “cde” concat

“b” ++ “cde” = “bcde” concat

“ab” ++ “cde” = “abcde”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Concatenation
“s” ∈ Σ∗

concat-epsilon
“” ++ “s” = “s”

c ∈ Σ “s1” ++ “s2” = “s3” concat
“cs1” ++ “s2” = “cs3”

Is “ab” ++ “cde” = “abcde”?

a ∈ Σ

b ∈ Σ

c ∈ Σ

d ∈ Σ

e ∈ Σ

epsilon

“” ∈ Σ∗
char

“e” ∈ Σ∗
char

“de” ∈ Σ∗
char

“cde” ∈ Σ∗
concat-epsilon

“” ++ “cde” = “cde” concat

“b” ++ “cde” = “bcde” concat
“ab” ++ “cde” = “abcde”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Concatenation
“s” ∈ Σ∗

concat-epsilon
“” ++ “s” = “s”

c ∈ Σ “s1” ++ “s2” = “s3” concat
“cs1” ++ “s2” = “cs3”

Is “ab” ++ “cde” = “abcde”?

a ∈ Σ
b ∈ Σ

c ∈ Σ

d ∈ Σ

e ∈ Σ

epsilon

“” ∈ Σ∗
char

“e” ∈ Σ∗
char

“de” ∈ Σ∗
char

“cde” ∈ Σ∗
concat-epsilon

“” ++ “cde” = “cde” concat
“b” ++ “cde” = “bcde” concat

“ab” ++ “cde” = “abcde”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Concatenation
“s” ∈ Σ∗

concat-epsilon
“” ++ “s” = “s”

c ∈ Σ “s1” ++ “s2” = “s3” concat
“cs1” ++ “s2” = “cs3”

Is “ab” ++ “cde” = “abcde”?

a ∈ Σ
b ∈ Σ

c ∈ Σ

d ∈ Σ

e ∈ Σ

epsilon

“” ∈ Σ∗
char

“e” ∈ Σ∗
char

“de” ∈ Σ∗
char

“cde” ∈ Σ∗
concat-epsilon

“” ++ “cde” = “cde” concat
“b” ++ “cde” = “bcde” concat

“ab” ++ “cde” = “abcde”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Concatenation
“s” ∈ Σ∗

concat-epsilon
“” ++ “s” = “s”

c ∈ Σ “s1” ++ “s2” = “s3” concat
“cs1” ++ “s2” = “cs3”

Is “ab” ++ “cde” = “abcde”?

a ∈ Σ
b ∈ Σ

c ∈ Σ
d ∈ Σ

e ∈ Σ
epsilon

“” ∈ Σ∗
char

“e” ∈ Σ∗
char

“de” ∈ Σ∗
char

“cde” ∈ Σ∗
concat-epsilon

“” ++ “cde” = “cde” concat
“b” ++ “cde” = “bcde” concat

“ab” ++ “cde” = “abcde”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Concatenation
“s” ∈ Σ∗

concat-epsilon
“” ++ “s” = “s”

c ∈ Σ “s1” ++ “s2” = “s3” concat
“cs1” ++ “s2” = “cs3”

Theorem: “” is also a right identity for concatenation
Assume “s” ∈ Σ∗. From the de�nition of Σ∗, s must be of the form c1c2 ⋯ cn where ci ∈ Σ.

c1 ∈ Σ

cn ∈ Σ

epsilon
“” ∈ Σ∗

concat-epsilon
“” ++ “” = “” concat

“cn” ++ “” = “cn”
⋮

“c2 ⋯ cn” ++ “” = “c2 ⋯ cn” concat
“c1c2 ⋯ cn” ++ “” = “c1c2 ⋯ cn”

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Concatenation
“s” ∈ Σ∗

concat-epsilon
“” ++ “s” = “s”

c ∈ Σ “s1” ++ “s2” = “s3” concat
“cs1” ++ “s2” = “cs3”

Theorem: String concatenation is a function
If “s1” ++ “s2” = “s3” and “s1” ++ “s2” = “s4” then “s3” = “s4”.

Alphabets, Strings, and the Empty String

epsilon
“” ∈ Σ∗

c ∈ Σ “s” ∈ Σ∗
char

“cs” ∈ Σ∗

String Concatenation
“s” ∈ Σ∗

concat-epsilon
“” ++ “s” = “s”

c ∈ Σ “s1” ++ “s2” = “s3” concat
“cs1” ++ “s2” = “cs3”

infixr 5 : -- Not legal Haskell a : b : c = a : (b : c)
data [a] = [] | a : [a] -- Not legal Haskell [] is empty list : is cons
type String = [Char]

infixr 5 ++ -- a ++ b ++ c = a ++ (b ++ c)
(++) :: [a] -> [a] -> [a] -- Concatenate two lists
(++) [] s = s -- concat-epsilon
(++) (c:s1) s2 = c : s1 ++ s2 -- concat c : (s1 ++ s2)

Regular Expressions
A character matches itself “a”∼ a “x”∼ x
Juxtaposition matches a sequence “abc”∼ abc
| indicates a choice “ab”∼ ab|bc “bc”∼ ab|bc
* means “zero or more” “”, “a”, “aa”, “aaa”, “aaaa”, “aaaaa”, …∼ a*

Regular Expressions
A character matches itself “a”∼ a “x”∼ x
Juxtaposition matches a sequence “abc”∼ abc

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

Judgments: s∼ r “string s matches regular expression r”
Variables: c character r regular expression s string
Symbols: � “ ” | * a b c d. . .

Regular Expressions
A character matches itself “a”∼ a “x”∼ x
Juxtaposition matches a sequence “abc”∼ abc

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

“abc”∼ abc?

a ∈ Σ
char

“a”∼ a

b ∈ Σ
char

“b”∼ b

c ∈ Σ
char

“c”∼ c

⋮ concat

“b” ++ “c” = “bc” seq

“bc”∼ bc

⋮ concat

“a” ++ “bc” = “abc” seq

“abc”∼ abc

a ∈ Σ
char

“a”∼ a
b ∈ Σ

char
“b”∼ b

⋮ concat
“a” ++ “b” = “ab” seq

“ab”∼ ab
c ∈ Σ

char
“c”∼ c

⋮ concat
“ab” ++ “c” = “abc” seq

“abc”∼ abc

Regular Expressions
A character matches itself “a”∼ a “x”∼ x
Juxtaposition matches a sequence “abc”∼ abc

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

“abc”∼ abc?

a ∈ Σ
char

“a”∼ a

b ∈ Σ
char

“b”∼ b

c ∈ Σ
char

“c”∼ c

⋮ concat

“b” ++ “c” = “bc” seq

“bc”∼ bc

⋮ concat

“a” ++ “bc” = “abc” seq
“abc”∼ abc

a ∈ Σ
char

“a”∼ a
b ∈ Σ

char
“b”∼ b

⋮ concat
“a” ++ “b” = “ab” seq

“ab”∼ ab
c ∈ Σ

char
“c”∼ c

⋮ concat
“ab” ++ “c” = “abc” seq

“abc”∼ abc

Regular Expressions
A character matches itself “a”∼ a “x”∼ x
Juxtaposition matches a sequence “abc”∼ abc

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

“abc”∼ abc?

a ∈ Σ
char

“a”∼ a

b ∈ Σ
char

“b”∼ b

c ∈ Σ
char

“c”∼ c

⋮ concat

“b” ++ “c” = “bc” seq
“bc”∼ bc

⋮ concat
“a” ++ “bc” = “abc” seq

“abc”∼ abc

a ∈ Σ
char

“a”∼ a
b ∈ Σ

char
“b”∼ b

⋮ concat
“a” ++ “b” = “ab” seq

“ab”∼ ab
c ∈ Σ

char
“c”∼ c

⋮ concat
“ab” ++ “c” = “abc” seq

“abc”∼ abc

Regular Expressions
A character matches itself “a”∼ a “x”∼ x
Juxtaposition matches a sequence “abc”∼ abc

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

“abc”∼ abc?

a ∈ Σ
char

“a”∼ a

b ∈ Σ
char

“b”∼ b
c ∈ Σ

char
“c”∼ c

⋮ concat
“b” ++ “c” = “bc” seq

“bc”∼ bc
⋮ concat

“a” ++ “bc” = “abc” seq
“abc”∼ abc

a ∈ Σ
char

“a”∼ a
b ∈ Σ

char
“b”∼ b

⋮ concat
“a” ++ “b” = “ab” seq

“ab”∼ ab
c ∈ Σ

char
“c”∼ c

⋮ concat
“ab” ++ “c” = “abc” seq

“abc”∼ abc

Regular Expressions
A character matches itself “a”∼ a “x”∼ x
Juxtaposition matches a sequence “abc”∼ abc

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

“abc”∼ abc? What should we do about ambiguity?

a ∈ Σ
char

“a”∼ a

b ∈ Σ
char

“b”∼ b
c ∈ Σ

char
“c”∼ c

⋮ concat
“b” ++ “c” = “bc” seq

“bc”∼ bc
⋮ concat

“a” ++ “bc” = “abc” seq
“abc”∼ abc

a ∈ Σ
char

“a”∼ a
b ∈ Σ

char
“b”∼ b

⋮ concat
“a” ++ “b” = “ab” seq

“ab”∼ ab
c ∈ Σ

char
“c”∼ c

⋮ concat
“ab” ++ “c” = “abc” seq

“abc”∼ abc

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

Judgments: s∼ r “string s matches regular expression r”
Variables: c character r regular expression s string
Symbols: � “ ” | * ()

“abc”∼ a(bc)?

a ∈ Σ
char

“a”∼ a

b ∈ Σ
char

“b”∼ b
c ∈ Σ

char
“c”∼ c

⋮ concat
“b” ++ “c” = “bc” seq

“bc”∼ bc paren

“bc”∼ (bc)
⋮ concat

“a” ++ “bc” = “abc” seq
“abc”∼ a(bc)

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

Judgments: s∼ r “string s matches regular expression r”
Variables: c character r regular expression s string
Symbols: � “ ” | * ()

“abc”∼ a(bc)?

a ∈ Σ
char

“a”∼ a

b ∈ Σ
char

“b”∼ b
c ∈ Σ

char
“c”∼ c

⋮ concat
“b” ++ “c” = “bc” seq

“bc”∼ bc paren
“bc”∼ (bc)

⋮ concat
“a” ++ “bc” = “abc” seq

“abc”∼ a(bc)

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

Judgments: s∼ r “string s matches regular expression r”
Variables: c character r regular expression s string
Symbols: � “ ” | * ()

“abc”∼ a(bc)?

a ∈ Σ
char

“a”∼ a

b ∈ Σ
char

“b”∼ b
c ∈ Σ

char
“c”∼ c

⋮ concat
“b” ++ “c” = “bc” seq

“bc”∼ bc paren
“bc”∼ (bc)

⋮ concat
“a” ++ “bc” = “abc” seq

“abc”∼ a(bc)

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

-- An algebraic data type resolves ambiguity in RE structure (parentheses unneeded)
data RE = Epsilon -- Epsilon/empty string

 | Ch Char -- Single Character
 | Seq RE RE -- Sequence, e.g., r1r2

infix 5 ~~ -- Regular expression match operator (Haskell already uses ∼)
(~~) :: String -> RE -> Bool
"" ~~ Epsilon = True -- epsilon
[c1] ~~ Ch c2 = c1 == c2 -- char
s3 ~~ Seq r1 r2 = -- What to do for seq? How dowe choose s1, s2?
_ ~~ _ = False -- default

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

ghci> import Data.List (inits, tails)
ghci> inits "abc" -- All prefixes, shortest first
["","a","ab","abc"]

ghci> tails "abc" -- All su�ixes, longest first
["abc","bc","c",""]

ghci> :t zipWith -- zipWith f [a1, a2, ...] [b1, b2, ...] = [f a1 b1, f a2 b2, ...]
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

ghci> :t or -- Logical OR of a list of Booleans
or :: Foldable t => t Bool -> Bool

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

import Data.List (inits, tails)
data RE = Epsilon | Ch Char | Seq RE RE

infix 5 ~~
(~~) :: String -> RE -> Bool
"" ~~ Epsilon = True -- epsilon
[c1] ~~ Ch c2 = c1 == c2 -- char
s3 ~~ Seq r1 r2 = or $ zipWith testSplit (inits s3) (tails s3) -- seq

 where testSplit s1 s2 = s1 ~~ r1 && s2 ~~ r2
_ ~~ _ = False -- default

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

data RE = Epsilon | Ch Char | Seq RE RE | Alt RE RE

(~~) :: String -> RE -> Bool
"" ~~ Epsilon = True -- epsilon
[c1] ~~ Ch c2 = c1 == c2 -- char
s3 ~~ Seq r1 r2 = or $ zipWith testSplit (inits s3) (tails s3) -- seq

 where testSplit s1 s2 = s1 ~~ r1 && s2 ~~ r2
s ~~ Alt r1 r2 = s ~~ r1 || s ~~ r2 -- alt-l and alt-r
_ ~~ _ = False -- default

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

star-0
“”∼ r*

s1∼ r s2∼ r* s1 ++ s2 = s3 star-1
s3∼ r*

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

star-0
“”∼ r*

s1∼ r s2∼ r* s1 ++ s2 = s3 star-1
s3∼ r*

data RE = Epsilon | Ch Char | Seq RE RE | Alt RE RE | Star RE
(~~) :: String -> RE -> Bool -- HANGS TESTING “b”∼ �

∗

"" ~~ Epsilon = True -- epsilon
[c1] ~~ Ch c2 = c1 == c2 -- char
s3 ~~ Seq r1 r2 = or $ zipWith testSplit (inits s3) (tails s3)

 where testSplit s1 s2 = s1 ~~ r1 && s2 ~~ r2
s ~~ Alt r1 r2 = s ~~ r1 || s ~~ r2 -- alt-l and alt-r
"" ~~ Star _ = True -- star-0
s3 ~~ Star r = or $ zipWith testSplit (inits s3) (tails s3)

 where testSplit s1 s2 = s1 ~~ r && s2 ~~ (Star r)
_ ~~ _ = False -- default

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2

s∼ r paren
s∼ (r)

s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

star-0
“”∼ r*

s1∼ r s2∼ r* s1 ++ s2 = s3 star-1
s3∼ r*

data RE = Epsilon | Ch Char | Seq RE RE | Alt RE RE | Star RE
(~~) :: String -> RE -> Bool -- STILL HANGS ON “b”∼ �

∗

"" ~~ Epsilon = True -- epsilon
[c1] ~~ Ch c2 = c1 == c2 -- char
s3 ~~ Seq r1 r2 = or $ zipWith testSplit (inits s3) (tails s3)

 where testSplit s1 s2 = s1 ~~ r1 && s2 ~~ r2
s ~~ Alt r1 r2 = s ~~ r1 || s ~~ r2 -- alt-l and alt-r
"" ~~ Star _ = True -- star-0
s3 ~~ Star r = or $ zipWith testSplit (inits s3) (tails s3)

 where testSplit s1 s2 = s2 ~~ (Star r) && s1 ~~ r
_ ~~ _ = False -- default

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2
s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

star-0
“”∼ r*

s1∼ r s2∼ r* s1 ++ s2 = s3 star-1
s3∼ r*

“b”∼ �*?

epsilon

“”∼ �

⋮ star-1

“b”∼ �* “” ++ “b” = “b” star-1

“b”∼ �*

s1 = “” s2 = “b”

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2
s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

star-0
“”∼ r*

s1∼ r s2∼ r* s1 ++ s2 = s3 star-1
s3∼ r*

“b”∼ �*?

epsilon

“”∼ �

⋮ star-1

“b”∼ �* “” ++ “b” = “b” star-1
“b”∼ �*

s1 = “” s2 = “b”

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2
s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

star-0
“”∼ r*

s1∼ r s2∼ r* s1 ++ s2 = s3 star-1
s3∼ r*

“b”∼ �*?

epsilon
“”∼ �

⋮ star-1

“b”∼ �* “” ++ “b” = “b” star-1
“b”∼ �*

s1 = “” s2 = “b”

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2
s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

star-0
“”∼ r*

s1∼ r s2∼ r* s1 ++ s2 = s3 star-1
s3∼ r*

“b”∼ �*?

epsilon
“”∼ �

⋮ star-1
“b”∼ �* “” ++ “b” = “b” star-1

“b”∼ �*
s1 = “” s2 = “b”

Regular Expressions

epsilon
“”∼ �

c ∈ Σ
char

“c”∼ c
s1∼ r1 s2∼ r2 s1 ++ s2 = s3 seq

s3∼ r1r2
s∼ r1 alt-l
s∼ r1|r2

s∼ r2 alt-r
s∼ r1|r2

star-0
“”∼ r*

s1∼ r s2∼ r* s1 ++ s2 = s3 s1 ≠ “” star-1
s3∼ r*

(~~) :: String -> RE -> Bool
"" ~~ Epsilon = True -- epsilon
[c1] ~~ Ch c2 = c1 == c2 -- char
s3 ~~ Seq r1 r2 = or $ zipWith testSplit (inits s3) (tails s3)

 where testSplit s1 s2 = s1 ~~ r1 && s2 ~~ r2
s ~~ Alt r1 r2 = s ~~ r1 || s ~~ r2 -- alt-l and alt-r
"" ~~ Star _ = True -- star-0
s3 ~~ Star r = or $ zipWith testSplit (inits s3) (tails s3)

 where testSplit [] _ = False
 testSplit s1 s2 = s1 ~~ r && s2 ~~ (Star r)
_ ~~ _ = False -- default

Backtracking sucks
This is a backtracking algorithm that tries everything until it works
What does this do on “aaaaaaabb”∼ (aaa)*b*?

(~~) :: String -> RE -> Bool
"" ~~ Epsilon = True -- epsilon
[c1] ~~ Ch c2 = c1 == c2 -- char
s3 ~~ Seq r1 r2 = or $ zipWith testSplit (inits s3) (tails s3)

 where testSplit s1 s2 = s1 ~~ r1 && s2 ~~ r2
s ~~ Alt r1 r2 = s ~~ r1 || s ~~ r2 -- alt-l and alt-r
"" ~~ Star _ = True -- star-0
s3 ~~ Star r = or $ zipWith testSplit (inits s3) (tails s3)

 where testSplit [] _ = False
 testSplit s1 s2 = s1 ~~ r && s2 ~~ (Star r)
_ ~~ _ = False -- default

A Better Way: Thompson’s Algorithm

Regular Expressions

Nondeterministic Finite Automata

Deterministic Finite Automata

Tables

Thompson’s Construction

Subset Construction

c
c

r1r2
r1 r2r1

r1|r2

r1

r2

�

�

�

�

(r)∗ r� �

�

�

Ken Thompson. Programming techniques: Regular expression search algorithm.
Communications of the ACM, 11(6):419–422, June 1968.

(a|b)∗abb

�

�

a

�

b

�

�

� a b b

�

�

a

b

a

b

b

a

a

ba

b

(a|b)∗abb

�

�

a

�

b

�

�

� a b b

�

�

a

b

a

b

b

a

a

ba

b

(a|b)∗abb

�

�

a

�

b

�

�

� a b b

�

�

a

b

a

b

b

a

a

ba

b

(a|b)∗abb

�

�

a

�

b

�

�

� a b b

�

�

a

b

a

b

b

a

a

ba

b

(a|b)∗abb

�

�

a

�

b

�

�

� a b b

�

�

a

b

a

b

b

a

a

b

a

b

(a|b)∗abb

�

�

a

�

b

�

�

� a b b

�

�

a

b

a

b

b

a

a

ba

b

Brzozowski derivatives
)s R is the derivative of regular expression R w.r.t. the string s
“Every string that can follow s to match R”
)s1 R = {s2 | s1s2 ∈ L(R)}, where L(R) is the language of R

)a a = �)a aa = a)a abc = bc)b abc = ∅)a ab|cd = b
)a abc|acd = bc|cd)a a*bc = a*bc)a a*ac = a*ac|c

Theorem: the derivative of a regular expression is a regular expression (including ∅)
Some subtlety when “”∼ R, rules otherwise look like those for polynomials
Use “subset construction” to build a DFA: label states with regular expression derivatives

Janusz A. Brzozowski. Derivatives of regular expressions.
Journal of the Association for Computing Machinery, 11(4):481–494, October 1964.

Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives re-examined.
Journal of Functional Programming, 19(2):173–190, March 2009.

Brzozowski derivatives
)s R is the derivative of regular expression R w.r.t. the string s
“Every string that can follow s to match R”
)s1 R = {s2 | s1s2 ∈ L(R)}, where L(R) is the language of R

)a a = �)a aa = a)a abc = bc)b abc = ∅)a ab|cd = b
)a abc|acd = bc|cd)a a*bc = a*bc)a a*ac = a*ac|c

Theorem: the derivative of a regular expression is a regular expression (including ∅)
Some subtlety when “”∼ R, rules otherwise look like those for polynomials
Use “subset construction” to build a DFA: label states with regular expression derivatives

Janusz A. Brzozowski. Derivatives of regular expressions.
Journal of the Association for Computing Machinery, 11(4):481–494, October 1964.

Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives re-examined.
Journal of Functional Programming, 19(2):173–190, March 2009.

Brzozowski derivatives
)s R is the derivative of regular expression R w.r.t. the string s
“Every string that can follow s to match R”
)s1 R = {s2 | s1s2 ∈ L(R)}, where L(R) is the language of R

)a a = �)a aa = a)a abc = bc)b abc = ∅)a ab|cd = b
)a abc|acd = bc|cd)a a*bc = a*bc)a a*ac = a*ac|c

Theorem: the derivative of a regular expression is a regular expression (including ∅)
Some subtlety when “”∼ R, rules otherwise look like those for polynomials

Use “subset construction” to build a DFA: label states with regular expression derivatives

Janusz A. Brzozowski. Derivatives of regular expressions.
Journal of the Association for Computing Machinery, 11(4):481–494, October 1964.

Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives re-examined.
Journal of Functional Programming, 19(2):173–190, March 2009.

Brzozowski derivatives
)s R is the derivative of regular expression R w.r.t. the string s
“Every string that can follow s to match R”
)s1 R = {s2 | s1s2 ∈ L(R)}, where L(R) is the language of R

)a a = �)a aa = a)a abc = bc)b abc = ∅)a ab|cd = b
)a abc|acd = bc|cd)a a*bc = a*bc)a a*ac = a*ac|c

Theorem: the derivative of a regular expression is a regular expression (including ∅)
Some subtlety when “”∼ R, rules otherwise look like those for polynomials
Use “subset construction” to build a DFA: label states with regular expression derivatives

Janusz A. Brzozowski. Derivatives of regular expressions.
Journal of the Association for Computing Machinery, 11(4):481–494, October 1964.

Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives re-examined.
Journal of Functional Programming, 19(2):173–190, March 2009.

