
COMS 6998 TLC: Homework 1

Stephen A. Edwards, Columbia University

Due Sunday, March 5 at 11:59 PM, 2023

Please submit this as a PDF �le on Courseworks. You may handwrite and scan or create
PDF on the computer, e.g., using LaTeX. For the latter, check out the semantic, syntax, and
libertine packages.

1. String Concatenation

Assume you know for any character c whether c ∈ Σ and for any sequence s of
zero-or-more characters in Σ that “s” ∈ Σ∗.
Use the following rules for string concatenation

“s” ∈ Σ∗
“” ++ “s” = “s” concat-epsilon

c ∈ Σ “s1” ++ “s2” = “s3”
“cs1” ++ “s2” = “cs3” concat

to prove that
“con” ++ “cat” = “concat”

when Σ = {a, c, n, o, t}.
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2. Binary Search Trees

First, assume you can conclude whether something is a natural number, i.e., n ∈ ℕ,
and that given two n1, n2 ∈ ℕ, you can conclude whether n1 < n2 or n1 = n2, i.e.,
you do not have to o�er proofs for, say, 5 ∈ ℕ, 3 < 4, or 2 = 2. You may not assume
any other properties of natural numbers.

Consider the following axiomatization of binary search trees with unique elements
written syntactically. Something like “leaf 4” represents a tree with a single leaf

holding 4 whereas “branch(leaf 2, leaf 4, 3)” represents the tree 3
2 4 . The judg-

ments “min(t, n)” and “max(t, n)” are meant to indicate n is the minimum and max-
imum values in tree t , respectively.

n ∈ ℕ
max(leaf n, n) max-leaf

n ∈ ℕ max(t2, n2) n < n2
max(branch(t1, t2, n), n2)

max-branch

n ∈ ℕ
min(leaf n, n) min-leaf

n ∈ ℕ min(t1, n1) n1 < n
min(branch(t1, t2, n), n1)

min-branch

n ∈ ℕ
leaf n ∶ BST

BST-leaf

n ∈ ℕ max(t1, n1) min(t2, n2) n1 < n n < n2
branch(t1, t2, n) ∶ BST

BST-branch
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(a) In the style shown in class (i.e., a stack of rules), prove that

branch(leaf 1, leaf 5, 3) ∶ BST

is true under these rules.
(b) Unfortunately, these rules don’t correctly capture the usual constraints on the

values in a binary tree (e.g., everything on the left branch is less than the value;
everything on the right is greater). Devise a counterexample by replacing each
? below with numbers such that t violates the usual properties of a binary tree,
yet t ∶ BST under the rules above, i.e., show a proof of t ∶ BST.

t = branch(branch(leaf ?, leaf ?, 8), branch(leaf ?, leaf ?, 12), 10)

(c) Propose a corrected BST-branch rule (i.e., modify the preconditions above the
line, not the conclusion below it) that correctly re�ects the usual properties of
a binary search tree. Don’t add or change any other existing rules at this point.

(d) Now that your BST-branch rule works, can you remove any preconditions in
the other rules without breaking the overall tree correctness property?

(e) Add searching rules, i.e., that can conclude n ∈ t when n is a natural number
that appears in the tree t .
Here is the base case: n ∈ ℕ

n ∈ leaf n in-leaf

Your other rules should look like

?
n1 ∈ branch(t1, t2, n2)

in-branch-?

Do not introduce unnecessary variables or preconditions.
Your rules must be algorithmic (i.e., they could be implemented in Haskell
or some other language) and unambiguous (there should only be one way to
prove each valid statement).
Don’t forget that t must be a binary search tree; assert this in your rules.
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3. Top-Down (Predictive) Parsing

The left-factored grammar

dig ::= 0 | 1 | . . . | 9
expr ::= dig exprt

exprt ::= + dig exprt | - dig exprt |

(note that exprt may be the empty string) can be expressed as the following set of
rules:

0
dig⟶ lit(0)

zero ⋯
9

dig⟶ lit(9)
nine

d dig⟶ d′ e exprt←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
d′

e′

d e expr⟶ e′
expr

exprt←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
e′

e′
exprt

d dig⟶ d′ e exprt←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
add(e′,d′)

e′′

+ d e exprt←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
e′

e′′
add

d dig⟶ d′ e exprt←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
sub(e′,d′)

e′′

- d e exprt←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
e′

e′′
sub

Prove that under these rules,

1 - 2 - 3
expr⟶ sub(sub(lit(1), lit(2)), lit(3))

Hint: for a judgment of the form e exprt←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
e′

e′′, think of e and e′ as inputs and e′′ as
the output. Ultimately, the exprt rule tells us that if e is empty, e′′ is just e′.
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