
COMSW4995 Parallel Functional Programming Project Report
MapReduceWord Frequency Search (WFS)

Sarah Yang (sy3038)
Arush Sarda (as6785)
Patricia Luc (pbl2116)

1. Introduction

In this project, we aimed to modify and extend on the word frequency program we
completed as homework. In addition to the word counter, we implemented a word
search functionality which outputs the count of a user-inputted search word.
MapReduceWord Frequency Search (WFS) works as follows: first, it reads in the input
file specified by the program arguments. Then, it calculates word frequencies of the
input file using MapReduce. Finally, it repeatedly asks the user for a search word, and if
the word exists in the file, then the program prints the word and its count, otherwise,
the program prints the most similar word in the input file and its corresponding count.

2. Implementation

To calculate the word frequencies, we used the MapReduce programming model[1].
MapReduce has a unique advantage in parallelism because it was designed for large
amounts of data and distributed systems, where multiple machines work in parallel to
analyze data. TheMapReduce model is split into two phases: map and reduce. Before
entering the map phase, the input data is split into chunks and assigned to each
machine. In the map phase, mapper machines extract relevant data from their assigned
chunk. In the reduce phase, reducer machines take their assigned map stage output and
aggregates the information. In our application of MapReduce, mappers emit a list of
tuples (<tokenized word>, 1), and reducers aggregate the list of tuples into a map of
unique words to their count.

1

Figure 1. Workflow of MapReduce [2]

Regarding the word search feature, if the search word exists in the input file, the
program finds its count by consulting the word count map. In the case that the search
word does not exist in the input file, a fuzzy search algorithm using Levenshtein
distance is used to find the closest matching existing word. The Levenshtein distance
between two words is the minimum number of single-character edits (insertions,
deletions, or substitutions) required to change one word into another. In our program,
the closest matching word would be the one that has the smallest distance from the
user’s search word.

3. Parallelization

As for how we then approached parallelizing our program, we will discuss how we first
examined parallelism options in the MapReduce step and then techniques explored in
the fuzzy word search step.

3.1 Parallelizing Map Reduce
For parallelizing Map Reduce, we considered two different designs: parallelizing each
step of Map Reduce or parallelizing Map Reduce across chunks. To parallelize each
step of Map Reduce, the file contents are split into k number of chunks in which k is
the number of cores being run. All cores would then “clean” their respect chunks to
find valid words in the file. To find words, all non-alphabetic characters aside from
whitespace are discarded and whatever is left is treated as lowercase. Upon completion

2

of this step, all cores proceed to do map operations on their respective chunks. Upon
completion of this step, all cores proceed to do reduce operations on their assigned
chunks. Finally, one core is tasked to put the output of each reduce together into a
single map. To parallelize across chunks, the file contents are split into k number of
chunks as well. Each core then performs clean, map, and reduce operations on their
respective chunks. Likewise, one core takes the output of each reduce from each core
and aggregates them together into a complete frequency map.

We decided the latter parallelization design would be the most optimal as we did not
want stages of parallelization to have to wait upon one another and run into potential
straining issues with synchronization after each parallelization step. We did implement
both designs and found that parallelizing each chunk rather than each step did run
faster ultimately supporting our initial design choice. This is because separating the
parallelization into separate steps inevitably adds unnecessary and additional overhead
therefore making it perform as if it were purely sequential.

3.2 Parallelizing Fuzzy Search
We examined similar parallelization designs for the fuzzy word search portion of our
program. Initially, we designed the parallel fuzzy search implementation such that the
map was split into k chunks. Following, each core computed the Levenshtein distances
between the target word and each word within its chunk. Upon completion, the cores
would then find the minimum distance of their respective chunks. This ultimately was
a design based on parallelizing each step and thus when testing later on, it wasn’t
leading to the speedup we’d expected. This further supported our finding that
parallelizing each step separately is inefficient and potentially adds overhead. In the
final version, each core calculates the distances of the words in its chunk against the
target word, all the while keeping track of the minimum distance that it sees and then
returns the minimum Levenshtein distance of its chunk. One core then gathers up the
minimum distances of each chunk and finds the overall minimum across them.

3

Unset

Unset

We also considered parallelizing the Levenshtein distance calculation itself however
realized that it is already very optimal. Using dynamic programming and memoization,
it runs in O(nm) where n and m are the length of the strings. The longest word in the
English dictionary is 45 letters long so it runs in constant time for all real-world
scenarios. So parallelizing this part of the program would not make a significant
difference to the end speedup.

4. Sequential Haskell Implementation

This Haskell code is a simple implementation of the MapReduce paradigm for word
counting, with fuzzy searching to find the most similar word to a user-inputted search
word using the Levenshtein distance. We detail the implementation and its functions
below.

4.1 Data Cleaning and Splitting

cleanAndSplit :: String -> [String]
cleanAndSplit s = words $ Prelude.map toLower $ Prelude.filter (\x
-> isAlpha x || isSpace x) s

The ‘cleanAndSplit’ function is used to preprocess the input text. It uses the ‘map’ and
‘filter’ functions from ‘Prelude’ to transform and filter the input string. The lambda
function ‘(\x -> isAlpha x || isSpace x)’ filters out non-alphabetic characters except for
spaces, and then ‘words’ is used to split the string into a list of words.

4.2 Map Stage

doMap :: [String] -> [(String, Int)]
doMap xs = [(w,1) | w <- xs]

4

Unset

Unset

The ‘doMap’ function performs the map phase of MapReduce. It uses Haskell’s list
comprehension to create a list of key-value pairs, such that each word in the input list
‘xs’ is paired with the integer ‘1’.

4.3 Reduce Stage

doReduce :: [(String, Int)] -> Map String Int
doReduce xs = Map.fromListWith (+) xs

The ‘doReduce’ function performs the reduce phase of MapReduce. It uses the
‘fromListWith’ function from the ‘Data.Map’ module alongside the ‘(+)’ function to
merge the list of tuples ‘xs’ into a map, summing the values of duplicate keys.

4.4 Levenshtein Distance Calculation

calcLevenshteinDist :: String -> String -> (Int, String)
calcLevenshteinDist w1 w2 = (last $ Prelude.foldl transform
[0..length w1] w2, w2)
where

transform xs@(x:xs') c = scanl compute (x + 1) (zip3 w1 xs
xs')

where
compute z (c', x', y) = minimum [y + 1, z + 1, x' +

fromEnum (c /= c')]

The ‘calcLevenshteinDist’ function calculates the Levenshtein distance between two
strings ‘w1’ and ‘w2’. It uses dynamic programming to achieve this by using ‘foldl’ and
‘scanl’ to build up a list of minimum edit distances between the two strings. The ‘zip3’

5

Unset

Unset

Unset

function then combines the characters of the two strings and the intermediate results
to calculate the minimum number of edits required.

4.5 Fuzzy Search

getClosestWord :: Map String Int -> String -> (String, Int)
getClosestWord wordFreq target = (closestWord, resultInt $
Map.lookup closestWord wordFreq)

where
closestWord = getClosestWord' calcLevenshteinDist (Map.keys

wordFreq) target

getClosestWord' :: (String -> String -> (Int, String)) -> [String] ->
String -> String
getClosestWord' distFunction listWords target' = snd $ Map.findMin $
Map.fromList $ Prelude.map (distFunction target') listWords

resultInt :: Maybe Int -> Int
resultInt r = case r of

Just x -> x
Nothing -> -1

The ‘getClosestWord’ function finds the word in the ‘wordFreq’ map that is most
similar to the ‘target’ word. It uses a helper function ‘getClosestWord`’ to iterate over
the keys of the ‘wordFreq’ map and calculate their Levenshtein distances to the target
word. The ‘resultInt’ helper function extracts frequencies from the ‘Map.lookup’
function.

6

Unset

Unset

4.6 User Interaction

getUserInput :: Map String Int -> IO ()
getUserInput wordFreq = do
putStr "Enter a search word (or 'exit' to quit): "
hFlush stdout
target <- getLine

if target == "exit"
then putStrLn "Exiting..."
else do
putStrLn (" You entered: \"" ++ target ++ "\"")
let value = resultInt $ Map.lookup target wordFreq
if value /= -1
then putStrLn $ " count: " ++ show value
else do
let (closest, count) = getClosestWord wordFreq target
putStrLn $ " search word not found:"
putStrLn $ " closest word: \"" ++ closest ++ "\"\n count:

" ++ (show count)
getUserInput wordFreq

The ‘getUserInput’ function repeatedly prompts the user for a search word and
provides feedback. It uses Haskell's IO monad to handle side effects, such as reading
from and writing to the console. The ‘putStr’, ‘hFlush’, and ‘getLine’ functions are
used for user interaction, while the if expression and do blocks handle the control flow.

4.7 Main Function

main :: IO ()
main = do
args <- getArgs
case args of

7

[filename] -> do
content <- readFile filename
putStrLn $ "Starting MapReduce word counting..."
let wordFreq = doReduce $ doMap $ cleanAndSplit content
wordFreq `deepseq` return () -- force computation
putStrLn $ "MapReduce completed..."
getUserInput $ wordFreq
_ -> do
pn <- getProgName
die $ "Usage: " ++ pn ++ " <filename>"

The ‘main’ function is the entry point of the Haskell program. It parses command-line
arguments, reads the content of a file, and applies the ‘cleanAndSplit’, ‘doMap’, and
‘doReduce’ functions to count word frequencies. The ‘deepseq’ function is used to
force the evaluation of the wordFreq map before proceeding to user interaction. The
program uses pattern matching to handle different cases of command-line arguments
and provides usage information if the arguments are incorrect.

5. Parallel Haskell Implementation

To optimize the sequential implementation and take advantage of Haskell’s
parallelism, we parallelized the two key components of our implementation:
MapReduce and Fuzzy Search. We describe our process for parallelizing each of these
algorithms below.

5.1 Parallel Map Reduce
The parallelization of the MapReduce process is achieved by splitting the input data
into chunks, processing each chunk in parallel, and then combining the results.

8

Unset

Unset

Unset

doMapReduce :: String -> Map.Map String Int
doMapReduce = Map.fromListWith (+) . flip zip (repeat 1) . cleanAndSplit

The ‘doMapReduce’ function is similar to the sequential version, but it operates on a
chunk of the input data rather than the whole data. It cleans and splits the input string
into words, maps each word to a tuple of the word and 1, and reduces the tuples by
summing the counts of the same words.

chunk :: Int -> [a] -> [[a]]
chunk _ [] = []
chunk n xs = let (ys, zs) = splitAt n xs in ys : chunk n zs

The ‘chunk’ function is used to split the input data into chunks of approximately
equal size. The number of chunks is determined by the number of available cores
(‘numCapabilities’), which allows the program to fully utilize the processing power of
the machine.

main = do
args <- getArgs
case args of

[filename] -> do
content <- readFile filename
putStrLn "Starting MapReduce word counting..."
let chunks = chunk (length content `div` numCapabilities)

content
mappedReduced = map doMapReduce chunks `using` parList rdeepseq
wordFreq = Map.unionsWith (+) mappedReduced
wordFreq `deepseq` return ()-- force computation
putStrLn "MapReduce completed..."
getUserInput wordFreq

9

_ -> do
pn <- getProgName
die $ "Usage: " ++ pn ++ " <filename>"

In the ‘main’ function, we parallelize the MapReduce process as follows:
1. The first step in the parallelization process is to divide the input data into

chunks. The chunk function is used to split the input string content into
non-overlapping substrings. The size of each chunk is determined by dividing
the total length of the input string by the number of available cores
(numCapabilities). This division ensures that the workload is evenly
distributed across all cores, maximizing the utilization of the machine's
processing power.

2. The next step is to apply the ‘doMapReduce’ function to each chunk in
parallel. This is achieved by using the ‘map’ function in combination with the
‘using’ function and the ‘parList rdeepseq’ strategy. The map function applies
the ‘doMapReduce’ function to each chunk, resulting in a list of maps where
the keys are words and the values are their frequencies in each chunk. The
‘using’ function is used to apply a parallel strategy to a value. In this case, the
value is the list of maps, and the strategy is ‘parList rdeepseq’. The parList
strategy applies a strategy to each element of a list in parallel, and the strategy
used here is ‘rdeepseq’, which forces the complete evaluation of each map,
ensuring that the computation of each chunk is fully evaluated before
proceeding.

3. The final step is to combine the results of the parallel computations into a
single map. The ‘Map.unionsWith (+)’ function is used to merge a list of maps
into one map. If a key appears in more than one map, the function combines
the corresponding values using the (+) function, effectively summing the
frequencies of each word across all chunks and creating the final word
frequency map.

10

Unset

Unset

5.2 Parallel Fuzzy Search
The parallelization of the fuzzy word search process is achieved by splitting the
frequency map into chunks, calculating the Levenshtein distances between the target
word and each word within the chunk in parallel while simultaneously keeping track of
the minimum distance seen, and then finding the minimum distance across each
chunks' minimums.

getClosestWord :: Map.Map String Int -> String -> (String, Int)
getClosestWord wordFreq target = (closestWord, resultInt $ Map.lookup
closestWord wordFreq)
where
closestWord = getClosestWord' (Map.keys wordFreq) target

The ‘getClosestWord’ function is similar to the sequential version, but no longer passes
the ‘calcLevenshteinDist’ function as a parameter to its helper function.

getClosestWord' :: [String] -> String -> String
getClosestWord' listWords target' = snd $ minimum $ parMap rdeepseq
(findMinDist startMin startWord target') chunks
where
chunks = chunk (length listWords `div` numCapabilities) listWords
startMin = -1
startWord = ""

The ‘getClosestWord’ helper function breaks the map into chunks using the ‘chunk’
function and applies the ‘findMinDist’ function to each chunk. This is achieved by
using the ‘parMap rdeepseq’ strategy. Then it collects the results of this strategy which
is a list of calculated minimum Levenshtein distance pairs across the chunks, finds the
minimum of them sequentially, and returns the word from the overall minimum
distance pair.

11

Unset

findMinDist :: Int -> String -> String -> [String] -> (Int, String)
findMinDist minDist minWord _ [] = (minDist, minWord)
findMinDist minDist minWord searchWord (x:xs)
| minDist == -1 = findMinDist dist word searchWord xs
| otherwise = findMinDist (min minDist dist) findMinWord searchWord
xs
where
distPair = calcLevenshteinDist searchWord x
dist = fst distPair
word = snd distPair
findMinWord | minDist <= dist = minWord

| otherwise = word

The ‘findMinDist’ function is what each core applies to their chunk in parallel. It
keeps track of the minimum distance seen, and the word that corresponds to that
distance, while calculating the Levenshtein distances between the target word and the
words in its chunk. The ‘calcLevenshteinDist’ is the same as we did not parallelize this
due to insignificant potential for speedup.

6. Evaluation and Performance

To compare the sequential implementation with the parallel implementation, we
performed the following for both the sequential and parallel implementations:

1. Compiled with Full Threading and Optimization
a. stack ghc -- -O2 -Wall -threaded -rtsopts -eventlog .\wfsSequential.hs
b. stack ghc -- -O2 -Wall -threaded -rtsopts -eventlog .\wfsParallel.hs

2. Implemented File Input Functionality
a. We implemented file input functionality to avoid issues with user input

when testing our code. Thus, we adjusted the programs to take in a
second command line argument, specifying an input text file that
should contain a list of queries to the program after the Map Reduce
stage has been completed. Below is the modified code, which includes a

12

Unset

Unset

function for running the tests within the input query file, and the
modified main function to take in the additional command line
argument for the file.

runTests :: Map.Map String Int -> [String] -> IO ()
runTests wordFreq testWords = do
putStrLn "Testing..."
let results = [getValueOrClosest wordFreq t | t <- testWords]

printTuple (str, num) = putStrLn $ "(" ++ str ++ ", " ++ show num ++
")"
mapM_ printTuple results
putStrLn "Done."

main :: IO ()
main = do
args <- getArgs
case args of

[filename, testfile] -> do
content <- readFile filename
tests <- readFile testfile

...
runTests wordFreq (cleanAndSplit tests)
_ -> do
pn <- getProgName
die $ "Usage: " ++ pn ++ " <filename>"

3. Tested with Three Input Query Files
a. testEasy.txt

i. This file contains short words already in the map. This serves to
test the performance of MapReduce, as we are not calling the
fuzzy search algorithm at all.

b. testHardShort.txt

13

i. This file contains short words that are not in the map. This
serves to test the performance of Fuzzy Search without the
overhead of Levenshtein distance computation.

c. testHardLong.txt
i. This file contains long words that are not in the map. This

serves to test the performance of both the Fuzzy Search
algorithm and the Levenshtein distance computation.

6.1 Sequential Testing
For the sequential implementation, we ran it with one core on all three test files.
Specifically, we ran it as (100-0.txt is the full works of William Shakespeare, around 1
million words):

.\wfsSequentialTest .\100-0.txt test\(queryFile).txt +RTS -N1 -ls -s

On each of the test files, these were the evaluation diagrams from Threadscope:

Figure 2. ThreadScope diagram for testEasy.txt running sequentially

14

Figure 3. ThreadScope diagram for testHardShort.txt running sequentially

Figure 4. ThreadScope diagram for testHardLong.txt running sequentially

6.2 Parallel Testing
For the parallel implementation, we ran it on C = 2 - 16 cores on all three test files.
Specifically, we ran it as (100-0.txt is the full works of William Shakespeare, around 1
million words):

15

.\wfsParallelTest .\100-0.txt test\(queryFile).txt +RTS -N(C) -ls -s

Here is a graph of the number of cores vs. the speedup over the sequential algorithm:

Figure 5. Parallel speedup over sequential as number of cores increases

The parallel MapReduce algorithm benefits linearly with the number of cores, as the
computation time continually decreases as the core count increases. This owes largely
to the size of the input, which is roughly a million words. This allows for the chunks to
be very large for each core to work on, so there is a better distribution of work for each
core, and the task is not too fine-grained. For the parallel closest word algorithm, on the
other hand, the search space is quite a bit smaller, being roughly 35,000 words, so the
amount of work for each core is quite a bit smaller, and it becomes a bit fine-grained.
This is why the performance peaks at 4 cores, as it seems that 4 cores is where the best
load balancing occurs and each core has a good distribution of work. As the number of
cores increases, however, the tasks become too fine-grained and it becomes slower.

16

For C = 4 cores, on each of the test files, these were the evaluation diagrams from
Threadscope:

Figure 6. ThreadScope diagram for testEasy.txt running parallel on 4 cores

17

Figure 7. ThreadScope diagram for testHardShort.txt running parallel on 4 cores

Figure 8. ThreadScope diagram for testHardLong.txt running parallel on 4 cores

7. Reflection and Conclusion

18

Haskell's high-level abstractions and powerful type systemmake it an excellent
language for parallel programming. The transition from the sequential version of the
code to the parallel version was quite easy to reason about, thanks to Haskell's support
for parallel strategies and its purely functional nature.

7.1 Effectiveness of the Algorithm, and Possible Bounds
7.1.1 Parallel Map Reduce
In the parallel Map Reduce algorithm, the input data is divided into chunks, and the
map and reduce operations are performed on each chunk in parallel. This is achieved
using the parList rdeepseq strategy, which applies a function to each element of a list in
parallel and ensures that the computation of each element is fully evaluated.

This approach takes full advantage of the available cores and scales well with the size of
the input data. As the size of the input data increases, the workload for each core also
increases, ensuring that all cores have plenty of work to do. This is particularly
beneficial for I/O-bound tasks like MapReduce, as it allows the CPU to continue
processing while waiting for I/O operations to complete.

However, it's worth noting that the effectiveness of this approach depends on the size
of the input data and the number of available cores. If the input data is too small or the
number of cores is too large, the overhead of managing the parallel computations may
outweigh the benefits.

7.1.2 Parallel Fuzzy Search
The process of finding the closest word was also parallelized by dividing the list of
words into chunks and processing each chunk in parallel. This is similar to the
parallelization of the MapReduce process and is achieved using the same parList
rdeepseq strategy.

19

However, the parallelism of this process is somewhat limited by the size of the search
space, which is the number of keys in the map. The maximum number of keys is the
number of unique words in the input data, which is bounded by the number of words
in the English language (around 500,000). As a result, if the number of cores increases
to be too large, the workload for each core becomes too fine-grained, and the overhead
of managing the parallel computations may outweigh the benefits.

7.2 Future Optimizations and Known Issues
7.2.1 Overall

1. Core Utilization: Currently, the program uses the maximum number of cores
available on the machine (numCapabilities). While this approach maximizes
the utilization of the machine's processing power, it may not be optimal in all
situations. For example, it may make the work for each core too fine-grained for
the input data. A potential optimization could be to perform adaptive core
allocation in the program based on the input and resource contention in the
computer.

2. File Reading: The program currently reads the entire input file into memory
before processing it. This approach can be inefficient and potentially
problematic when dealing with large files, as it can consume a significant
amount of memory. A potential optimization could be to read the file in
chunks and process each chunk as it is read, reducing memory usage and
potentially improving performance by overlapping I/O and computation.

7.2.2 Fuzzy Search
1. Data Structure: The program currently uses a list to store the words for the

fuzzy search algorithm. Searching a list has a linear time complexity, which can
be inefficient when dealing with a large number of words. A potential
optimization could be to use a more efficient data structure, such as a trie. A
trie can significantly prune the search space and speed up the search process,
especially when the words share common prefixes.

20

2. Output Consistency: The output of the fuzzy search algorithm in the parallel
version is not necessarily the same as in the sequential version. This is because
when there are ties in the minimum Levenshtein distance, the parallel version
may return a different word than the sequential version due to the
non-deterministic order of parallel computations. While this is not necessarily
a problem (as all words with the minimum distance are equally valid), it could
be confusing to users. A potential solution could be to sort the words and
always return the lexicographically smallest word in case of ties.

3. MinimumDistance Tracking: The program currently keeps track of the
minimum distance seen by each core as it calculates the distances. This is done
iteratively in theory but enacted recursively due to the recursive nature of the
findMinDist function. While this approach works, it may not be the most
efficient way to track the minimum distance. A potential optimization could
be to use a more efficient data structure or algorithm to track the minimum
distance, reducing the computational overhead and potentially improving
performance.

8. References

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
doi:10.1145/1327452.1327492

[2] Professor Roxana Geambasu, COMSW4113 Distributed Systems lecture slides.
https://systems.cs.columbia.edu/ds1-class/lectures/02-map-reduce.pdf

21

https://systems.cs.columbia.edu/ds1-class/lectures/02-map-reduce.pdf

