COMS W4995 001 Parallel Functional Programming Report

Trader Contagion: Agent-based Stochastic Model
of Markets

Name: Tsigemariam Assegid (UNI: tya2104)

November 27, 2023

Overview

In this project, I implemented a parallel version of the agent based and stochastic
model described in "Linking agent-based models and stochastic models of financial
markets". The paper focuses on linking agent-based and stochastic models to under-
stand financial market dynamics. The paper investigates the emergence of fat tails
and long-term memory in financial returns, suggesting that these characteristics can
be attributed to the collective behavior of market participants. It emphasizes the im-
portance of agent heterogeneity and the interaction between different types of traders.
The research demonstrates how agent-based models can provide valuable insights
into complex market phenomena and supports the idea that market dynamics are
deeply rooted in the actions and strategies of individual traders.

Implementation

The agent based model simulates the actions of individual agents in a financial market,

incorporating randomness(noise) to reflect real-world unpredictability.

The model calculates the probability of trading based on market velocity (V), differ-
entiating between fundamental (V) and technical traders (V). Fundamental traders
are assumed to hold a majority of the shares 83%, basedonhistoricaldatafrom1997 —
2006. Trading probability is derived from the velocities, with multiple choices for V,
including the best-fit value of 0.4 used in the paper.

Agents decide whether to buy, sell, or hold based on the calculated trading prob-
ability. They are also distributed into opinion groups, with the number of groups
determined by w. The model sets a logical minimum of one opinion group (where all
agents share the same opinion) and a maximum equal to the number of agents. The
diversity of opinions affects market dynamics, with a higher number of groups reduc-
ing herd behavior. At each timestep, the model updates based on agents” decisions

1

COMS W4995 001 Parallel Functional Programming Report

and market changes. This includes recalculating trading probabilities and adjusting
agent behaviors according to new market conditions. The boundaries on returns is set
according to the guidelines from Feng et al. 2012’s Appendix 5.

In my implementation, I mainly focused on testing sensitivity of the model return’s
on the number of opinion groups to []. I simulated 10 runs for each w (11 different w

values) listed on the paper. In each run, I used the following parameters:

- number of agents (n) : 1024
- probability of trading (p) : 0.2178

- steps: 1000

For each value of w, I collected key statistics: daily returns, daily trading volume,
total trading volume. Based on the paper, I implemented hill estimator and linear
regression model to understand the relationship between the returns and number of
opinion group.

Hill estimator is used in the paper to primarily to assess the tail heaviness of a dis-
tribution. The Hill estimator provides a measure of the "tail thickness" of the distri-
bution, with higher values indicating a "heavier" tail, which implies a higher risk of
extreme price movements. Hill estimators are used in financial modeling to to evalu-
ate the risk of extreme price movements. I implemented linear regression to to model
the relationship between the omega parameter (representing the number of opinion
groups) and the Hill estimator values of returns (representing market extremities) de-
rived from market simulations. The linear regression model is fitted to these values
and calculates and returns the slope, intercept, the coefficient of determination (RZ),
and p-value, which indicate how much of the variability in the Hill estimator can be

explained by omega.

After the simulations and analysis, the calculated p-value (0.00037123621) is less than
0.05 rejecting the null hypothesis and showing a significant relationship between the
variables. A positive correlation is also observed between omega and the Hill expo-
nent as shown in the paper. Higher omega values which means higher number of
opinion groups therefore decreased probability of herd effect correlate with a steeper
slope of the distribution. For instance, if all market participants converge into a sin-
gle opinion group and consequently execute identical trading actions, it would lead to

high fluctuation in return, reflecting extreme market movements

I also implemented the stochastic model detailed on the paper. It involved allocating
agents across different time horizons, informed by their trading strategies and market

behaviors. This model captures the randomness inherent in financial markets. Agents

COMS W4995 001 Parallel Functional Programming Report

are distributed based on an exponential decay function, which accounts for the dimin-

ishing influence of past market events over time.

Parallel Implementation

I parallelized the simulations and analysis related to different omega values described
in the section above. The sequential version took over 60s, I was able to get to around

6s in the parallel version.

Here are the threadscope results:

Timeline

0s 5s 10s 15s 20s 258 30s 35s 40s 45s 50s 55s B0s 65 -

Acsviy

| mHEca

HEC2

[&l [+

Time | Heap | GC | Spark stats | Spark sizes | Pracess info | Raw events

Total time: 66.222k
Mutator time: 52.641s
GC time: 13.581s
Productivity: 79.5% of mutator vs total

I-I:.Jg (3767490 events, 66.2225)

Figure 1: Sequential Simulation

N

w

N

COMS W4995 001 Parallel Functional Programming Report
R R e e e R

O
AT 1 1 O O R D 0

N0 0 T 0) 10 D 00 1 00 O T W 0 A AT
121

' Time | Heap | GC | Spark stats | Spark sizes | Process nfo | Raw events |

Total time:

GC time:

6.637s

Mutator time: 5.022s

1.615s

Productivity: 75.7% of mutator vs total

liog (372501 events, 6.6375)

Figure 2: Parallel Simulation

Code Listing

Main.hs

module

import
import
import
import
main

main =

Main (main) where

Lib

DifferentOmega
ParallelDifferentOmega
LinearRegression

10 O

diffomega

AgentBased.hs

module
(

3

import

(

AgentBased
Model
prunModel

initializeModel

step -- Function to perform one step of the model
dailyReturns -- Function to get daily returns from the model
dailyTradingVolumes -- Function to get daily trading volumes
runModel

where

System.Random

newStdGen, randomRIO, uniformR, Random(randomR), RandomGen)

48

49

50

51

COMS W4995 001 Parallel Functional Programming Report

import
import
import
import

(

import
import
import
import

import

System.Random.MWC (create)

System.Random.MWC.Distributions (normal)

Control.Monad (replicatelM,

Control .Monad.State

MonadState (put, state,

MonadIO(1iftIO0),
execStateT,
runState,

StateT)

get),

Statistics.Sample (mean, stdDev)
Data.Vector (fromList)
Graphics.Gnuplot.Simple (plotList)

Graphics.Gnuplot.Advanced ()

Debug.Trace ()

-- Model data type
data Model = Model {

n

1%

Integer,
Double,

dailyReturn :: Double

tradingVolume :: Int,

k

Int,

omega :: Double,

dailyReturns

ct
b

Int,
Int,

dailyTradingVolumes

} deri

> boxMul

boxMul
wher

r

ving (Show)

B

[Doublel],

[Int]

ler :: (Double, Double)

ler (ul, u2) = (zO0,

e

z1)

= sqrt (-2 * log ul)

theta = 2 * pi *x u2

z0
z1

= r * cos theta

= r * sin theta

replicateM_)

-> (Double, Double)

-- Generate a normally distributed number

generateNormal

generateNormal mean stddev gen

let

in (

scale = sqrt stddev

(ul, genl) = randomR (O,

(u2, gen2) = randomR (O,
(z0, _) = boxMuller (ul,

mean + z0 * scale,

gen2)

RandomGen g => Double

1) gen
1) genl
u2)

-> Double

_>g

-> (Double,

g)

59

61

62

63

64

66

68

69

70

COMS W4995 001 Parallel Functional Programming Report

-- Pure version of buySellHold with explicit random number generator

state
buySellHoldPure :: RandomGen g => Double -> Int -> g -> ([Int], g)
buySellHoldPure p amountTimes gen =
let (diceRolls, genl) = generateDiceRolls amountTimes gen
(coinFlips, gen2) = generateCoinFlips amountTimes genl
indices = filter ((<= (2 * p)) . snd) $ zip [0..] diceRolls
psis = zipWith (\(idx, _) coin -> (idx, if coin == 0 then 1

else -1)) indices coinFlips
result = foldr (\(idx, val) acc -> take idx acc ++ [val] ++
drop (idx + 1) acc) (replicate amountTimes 0) psis

in (result, gen2)

-- Helper function to generate a list of dice rolls

generateDiceRolls :: RandomGen g => Int -> g -> ([Doublel], g)
generateDiceRolls n = runState $ replicateM n (state $ uniformR (0.0,
1.0))
3 -- Helper function to generate a list of coin flips
generateCoinFlips :: RandomGen g => Int -> g -> ([Int], g)

generateCoinFlips n = runState $ replicateM n (state $§ randomR (0, 1))

-- buy_sell_hold function
buySellHold :: Double -> Int -> I0 [Int]
buySellHold p amountTimes = do
diceRolls <- replicateM amountTimes (randomRIO (0.0, 1.0))
let indices = filter ((<= (2 * p)) . snd) $ zip [0..] diceRolls
psis <- mapM (\(idx, _) -> do
coin <- randomRIO (0, 1 :: Int)
return (idx, if coin == 0 then 1 else -1)
) indices
return $ foldr (\(idx, val) acc -> take idx acc ++ [val] ++ drop (

idx + 1) acc) (replicate amountTimes 0) psis

mean’ :: Model -> Double
mean’ model = (fromIntegral (n model) / abs (dailyReturn model)) *x* (

omega model)

pdistributeOpinionGroups :: RandomGen g => Model -> g -> (Int, g)
pdistributeOpinionGroups model gen
| b model == 0 = (round $ mean’ model, gen)
| abs (dailyReturn model) >= fromIntegral (n model) = (1,gen)
| otherwise =

let mean = mean’ model

COMS W4995 001 Parallel Functional Programming Report

99 bVal = b model

100 (c, newGen) = generateNormal mean (fromIntegral bVal) gen
101 d = max 1 (round c)

102 in (min d (fromIntegral (n model)), newGen)

103

104

15 distributeOpinionGroups :: Model -> IO Int

106 distributeOpinionGroups model

107 | b model == 0 = return $ round $ mean’ model

108 | abs (dailyReturn model) >= fromIntegral (n model) = return 1
109 | otherwise = do

110 let mean = mean’ model

111 stdDev = sqrt (mean * fromIntegral (b model))

112 minValue = mean - stdDev
113 maxValue = mean + stdDev
114 g <- create

115 ¢ <- normal mean stdDev g

116 -- 1iftI0 $ putStrLn $ "c: " ++ show c ++ show mean ++ show
stdDev

117 let d = max 1 (round c)

118 return $§ min d (fromIntegral (n model))

119

120 applyBoundaries :: Double -> Double -> Double -> Double

121 applyBoundaries dailyReturn minReturn maxReturn =

122 let sign = if dailyReturn < O then -1 else 1

123 in sign * min maxReturn (max minReturn (abs dailyReturn))

124

125 pstep :: RandomGen g => Model -> g -> (Model, Int, g)

126 pstep model gen =

127 let (c, genl) = pdistributeOpinionGroups model gen

128 (psis, gen2) = buySellHoldPure (p model) c genl

129 averageAgentsPerGroup = fromIntegral (n model) / fromIntegral c

130 returnMatrix = map ((* averageAgentsPerGroup) . fromIntegral)
psis

131 -- Other calculations

132 tradingVolume = round $ sum $ map abs returnMatrix

133 dailyReturn’ = sum returnMatrix

134 minimumReturn = fromIntegral (n model) ** ((omega model - 1) /

omega model)

135 dailyReturn’’ = applyBoundaries dailyReturn’ minimumReturn (
fromIntegral (n model))

136 newModel = model { dailyReturn = dailyReturn’’,

137 dailyReturns = dailyReturns model ++ [
dailyReturn’’],

138 dailyTradingVolumes = dailyTradingVolumes

model ++ [tradingVolume],

COMS W4995 001 Parallel Functional Programming Report

139 ct = ct model + 1 }

140 in (newModel, ct model + 1, gen2)

141

142 step :: StateT Model IO Int

143 step = do

144 model <- get

145 c <- 1liftI0 $ distributeOpinionGroups model

146 psis <- 1liftI0 $ buySellHold (p model) c

147 let averageAgentsPerGroup = fromIntegral (n model) / fromIntegral
c

148 returnMatrix = map ((* averageAgentsPerGroup) . fromIntegral)
psis

149 -- 1iftI0 $ putStrLln $ "c: " ++ show c ++ ", avgAgentsPerGroup: "
++ show averageAgentsPerGroup ++ ", returnMatrix: " ++ show

returnMatrix

150 let

151 tradingVolume = round $ sum $ map abs returnMatrix

152 dailyReturn’ = sum returnMatrix -- Should be Double now

153 minimumReturn = fromIntegral (n model) ** ((omega model - 1) /

omega model)

154 dailyReturn’’ = applyBoundaries dailyReturn’ minimumReturn (
fromIntegral (n model))

155 put model { dailyReturn = dailyReturn’’,

156 dailyReturns = dailyReturns model ++ [dailyReturn’’],

157 dailyTradingVolumes = dailyTradingVolumes model ++ [
tradingVolumel],

158 ct = ct model + 1 }

159 return $ ct model + 1

160

6. prunModel :: RandomGen g => Int -> Model -> g -> (Model, g)

12 prunModel O model gen = (model, gen)

163 prunModel t model gen =

164 let (updatedModel, _, newgen) = pstep model gen

165 in prunModel (t - 1) updatedModel newgen

166

167 runModel :: Int -> Model -> I0 Model

s runModel t model = execStateT (replicateM_ t step) model

169

170 standardScale :: [Double] -> [Doublel

171 standardScale xs = map (\x -> (x - m) / s) absXs

172 where

173 absXs = map abs xs -- Take the absolute value of each element
174 vks = fromList absXs -- Convert the list to a Vector

175 m = mean vXs -- Calculate the mean

176 s = stdDev vXs -- Calculate the standard deviation

COMS W4995 001 Parallel Functional Programming Report

178 initializeModel :: Integer -> Double -> Double -> Int -> Int -> Model
179 initializeModel nVal pVal omegaVal bVal kVal = Model {

180 n = nVal,

181 p = pVal,

182 dailyReturn = 1.0,

183 dailyReturns = [],

184 dailyTradingVolumes = [],
185 omega = omegaVal,

186 b = bVal,

187 k = kVal,

188 tradingVolume = O,

189 ct =0

190 }

191

92 main :: I0 ()

193 main = do

194

195 let initialmodel = Model {n = 1024, p = 0.02178, dailyReturn =

1.0, dailyReturns = [], dailyTradingVolumes = [], omega = 1, b = 1,
k = 1, tradingVolume = 0, ct = 0}
196 gen <- newStdGen

197 finalmodell <- runModel 20 initialmodel

198 let (finalmodel, _) = prunModel 10000 initialmodel gen
199 y = standardScale (dailyReturns finalmodel)
200 y2 = standardScale (dailyReturns finalmodell)
201 points = zip ([1..] :: [Int]) y
202 plotList [] points

ABMSimulations.hs

I module ABMSimulation

2 (

3 runABM,

! prunABM

5) where

¢ import AgentBased

7 (Model(dailyTradingVolumes , dailyReturns),
8 prunModel,

9 runModel ,

10 initializeModel)

11 import Control.Monad (replicateM)

12 import System.Random (StdGen)

14 -- Function to run the ABM model for a given number of runs and time
steps
15 runABM :: Integer -> Double -> Double -> Int -> Int -> Int -> Int -> IO

([[Doublel]l, [[Int]])

[N

w

[$]

COMS W4995 001 Parallel Functional Programming Report

runABM n p omega b k t rumns = do
results <- replicateM rumns $ do
let model = initializeModel n p omega b k -- Initialize the
model
finalModel <- runModel t model -- Run the model
for t steps

let returns = dailyReturns finalModel

let volumes dailyTradingVolumes finalModel
return (returns, volumes)
let (returns, volumes) = unzip results

return (returns, volumes)

7 prunABM :: Integer -> Double -> Double -> Int -> Int -> Int -> Int ->

StdGen -> ([[Doublell, [[Int]])
prunABM n p omega b k t runs gen =

let results = replicate runs $
let model = initializeModel n p omega b k -- Initialize
the model
(finalModel, newGen) = prunModel t model gen -- Run
the model for t steps
returns = dailyReturns finalModel
volumes = dailyTradingVolumes finalModel

in (returns, volumes)

in unzip results

-- Function to calculate probability of trading based on the market

velocity of fundamental and chartist traders

probability0fTrading :: Double -> Double -> Double
probability0fTrading vf v = vc / (250 * 2)
where

ve = (v - 0.83 * vf) / (1 - 0.83)

Sequential version of the different omega simulations

module DifferentOmega (diffomega) where
import ABMSimulation (runABM)

import Control.Monad

import Data.List

import HillEstimator

import qualified Data.Map as Map

import LinearRegression

diffomega :: IO ()

diffomega = do
let omega_list = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4, 1.
2.0]

10

[N

w

[$]

COMS W4995 001 Parallel Functional Programming Report

results <- forM omega_list $ \omega -> do
runABM 1024 0.02178 omega 1 1 1000 10
let (normalized_return, normalized_voulme) = processResults results
hill_estimator_returns = applyHillEstimator 1 normalized_return
mean_return = init $ meanReturns hill_estimator_returns
(slope, intercept, r2, tStats, pVal) = reghAnalysis omega_list
mean_return
print (slope, intercept,r2, pVal)

return ()

applyHillEstimator:: Double -> [[[Doublel]] -> [[[Doublel]]]
applyHillEstimator t d = map (map (\x -> [hillEstimator t x])) d

normalise :: [Double] -> [Doublel
normalise xs = map (\x -> abs (x - mean) / stdDev) xs
where
mean = sum xs / fromIntegral (length xs)
stdDev = sqrt $ sum (map (\x -> (x - mean) ** 2) xs) / fromIntegral

(length xs)

processResults :: [([[Doublel]]l, [[Int]l])] -> ([[[Doublel]]l], [[[Double
11D
processResults results = (absNormalizedReturns, abmNormalisedVolumes)
where
absNormalizedReturns = map (map normalise . fst) results
abmNormalisedVolumes = map (map (normalise . map fromIntegral)

snd) results

meanReturns :: [[[Doublel]]l] -> [Doublel
meanReturns = map (mean . concat)

where

mean xs = sum xs / fromIntegral (length xs)

Parallel Version

module ParallelDifferentOmega (pdiffomega) where
import Control.Monad (replicateM)
import System.Random (newStdGen)
import Control.Parallel.Strategies
(runEval, parlist, parMap, rdeepseq, using)
import ABMSimulation (prunABM)
import Control.Parallel ()
import HillEstimator (hillEstimator)

import LinearRegression (regAnalysis)

pdiffomega :: I0Q)
pdiffomega = do

11

14

26

N

COMS W4995 001 Parallel Functional Programming Report

let omega_list = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4, 1.5,
2.0]

gens <- replicateM (length omega_list) newStdGen -- Generate a
list of random number generators

let results = zipWith (\omega gen -> prunABM 1024 0.02178 omega 1 1
10000 10 gen) omega_list gens

‘using ¢ parList rdeepseq

let (normalized_return, normalized_voulme) = processResults results
hill_estimator_returns = applyHillEstimator 1 normalized_return
mean_return = init $ meanReturns hill_estimator_returns

(slope, intercept, r2, tStats, pVal) = reghAnalysis omega_list
mean_return
print (slope, intercept,r2, pVal)

return ()

applyHillEstimator :: Double -> [[[Doublel]]] -> [[[Doublel]ll]
applyHillEstimator t = map (parMap rdeepseq (\x -> [hillEstimator t x])
)

normalise :: [Double] -> [Double]
normalise xs = map (\x -> abs (x - mean) / stdDev) xs
where
mean = sum xs / fromIntegral (length xs)
stdDev = sqrt $ sum (map (\x -> (x - mean) ** 2) xs) / fromIntegral

(length xs)

processResults :: [([[Doublel]]l, [[Int]l])] -> ([[[Doublel]]l], [[[Double
111

processResults results = runEval $ do
absNormalizedReturns <- rdeepseq (map (map normalise . fst) results
)
abmNormalisedVolumes <- rdeepseq (map (map (normalise . map
fromIntegral) . snd) results)

return (absNormalizedReturns, abmNormalisedVolumes)

meanReturns :: [[[Double]]] -> [Double]
meanReturns = map (mean . concat)

where

mean xs = sum xs / fromIntegral (length xs)

Linear Regression Model

{-# OPTIONS_GHC -Wno-identities #-}
module LinearRegression(regAnalysis)where
import Statistics.LinearRegression (linearRegressionRSqr)

import Numeric.LinearAlgebra

12

COMS W4995 001 Parallel Functional Programming Report

(Transposable(tr),
fromList,
(><),
inv,
(<>),
tolList,
takeDiag,
Linear (scale))
import Statistics.Distribution (Distribution(complCumulative))

import Statistics.Distribution.StudentT (studentT)

-- Fit the linear model and calculate statistical measures

regAnalysis :: [Double] -> [Double] -> (Double, Double, Double, [Double

], [Doublel)
reghAnalysis omega returns = (slope, intercept, r2, tStats, pVals)

where

xVec = fromList omega

yVec = fromList returns

(intercept, slope, r2) = linearRegressionRSqr xVec yVec

predictions = map (predict (intercept, slope)) omega

sse = sum $ zipWith (\x y -> (x - y) **x 2) predictions returns

sampleSize = length omega

numPredictors = 1.0

mse = sse / (fromIntegral sampleSize - numPredictors - 1.0)

ones = replicate (length omega) 1

xMatrix = (length omega >< 2) (ones ++ omega)

covarianceMatrix = scale mse $ inv (tr xMatrix Numeric.

LinearAlgebra.<> xMatrix)

se = tolist $ sqrt $ takeDiag covarianceMatrix

tStats = [slope / head sel

pVals = map (\t -> 2 * complCumulative (studentT (fromIntegral
sampleSize - numPredictors - 1)) (abs t)) tStats

predict :: (Double, Double) -> Double -> Double
predict (intercept, slope) x = intercept + slope * x
Hill Estimator

module HillEstimator (hillEstimator)where
import Numeric.LinearAlgebra ()

import Data.List (sort)

hillEstimator :: Double -> [Double] -> Double
hillEstimator tailPercentage datalist = alphaEst
where
sortedData = sort datalist

n = fromIntegral $ length sortedData

13

COMS W4995 001 Parallel Functional Programming Report

10 k = round $ (tailPercentage * n) / 100

11 logXNMinusK = log $ sortedData !! (round n - k - 1)

logXNMinusJPlusl = map log $ take k $§ reverse sortedData

13 alphaEst = fromIntegral k / sum (map (\x -> x - logXNMinuskK)
logXNMinusJPlus1)

15 normalise :: [Double] -> [Double]

s normalise array = normalized

17 where

18 mean = sum array / fromIntegral (length array)

19 stdDev = sqrt $ sum (map (\x -> (x - mean) ** 2) array) /

fromIntegral (length array)

20 normalized = map (\x -> abs (x - mean) / stdDev) array
Stochastic Model

I module Stochastic

2 (

3 StochasticModel (. .)

4 , runModel

5 , initializeStochasticModel

6) where

9 import System.Random.MWC
10 import System.Random.MWC.Distributions (normal)

11 data StochasticModel = StochasticModel {

12 n :: Integer,

13 p :: Double,

14 initial :: Double,

15 returns :: [Double],
16 time_horizon :: Bool,
17 d :: Double,

18 m :: Int

9 } deriving (Show)

N

initializeStochasticModel :: Integer -> Double -> Double -> Bool ->
Double -> Int -> StochasticModel

2 initializeStochasticModel nVal pVal initialVal timeHorizonVal dVal mVal

= StochasticModel {

23 n = nVal,

24 p = pVal,

25 initial = dinitialVal,

26 returns = [initialVal],

27 time_horizon = timeHorizonVal,
28 d = dVal,

29 m = mVal

14

44

N

COMS W4995 001 Parallel Functional Programming Report

}
-- Function to calculate time horizons
timeHorizons :: StochasticModel -> Double
timeHorizons model = sum timeHorizonsList / sum alphalist
where
returnslist = returns model
mValue = m model
dValue = d model
timeHorizonsList = [fromIntegral i #** (-dValue) * absReturn i |
<- [1..mValue]]
alphalist = [fromIntegral i ** (-dValue) | i <- [1..mValue]]
absReturn i
| length returnsList == 1 = abs (head returnsList)
| i >= length returnsList = abs (head returnsList - last
returnsList)
| otherwise = abs (last returnsList - (returnslList !! (length
returnsList - 1)))
-- Function to perform a step
step :: StochasticModel -> I0 StochasticModel

; step model = do

g <- createSystemRandom

normalVal <- normal 0.0 1.0 g
-- 1iftI0 $ putStrLn $ show normalVal

let variance = if time_horizon model

then 2 * p model * fromIntegral (n model) *

timeHorizons model

else 2 * p model * fromIntegral (m model) * abs (

last (returns model))

i

let std = sqrt variance
let value = std * normalVal
let newReturns = returns model ++ [valuel
return model { returns = newReturns }
runModel :: (Eq t, Num t) => t -> StochasticModel -> I0 StochasticModel
runModel = iterateM
where

return m

iterateM O m

iterateM n m step m >>=

Stochastic Simulations

module StochasticSimulation

(

) where

\newModel

-> iterateM (n-1) newModel

15

COMS W4995 001 Parallel Functional Programming Report

5 import Stochastic

6 (StochasticModel (returns), initializeStochasticModel, runModel)

7 import Control.Monad (replicateM, forM_)

8

9 -- Function to run the stochastic model for a given number of runs and
time steps

10 runStochasticModel :: Integer -> Double -> Double -> Bool -> Double ->
Int -> Int -> Int -> I0 [[Doublel]

11 runStochasticModel n p init timeHorizon d m t rumns = do

12 results <- replicateM rumns $ do

13 let model = initializeStochasticModel n p init timeHorizon d m
14 finalModel <- runModel t model

15 return (returns finalModel)

16 return results

References

1. Feng, L., Li, B., Podobnik, B., Preis, T., Stanley, H. E. (2012). Linking agent-
based models and stochastic models of financial markets. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 109(22), 8388-8393.
http:/ /www jstor.org/stable /41602564

2. Hill, B.M. (1975) A simple general approach to inference about the tail of a dis-
tribution. Annals of Statistics. 13, 331-341

16

