
The Parallel Stochastic Gradient Descent
Rishabh Ganesh (rg3478), Yealin Park (yp2611), Yue Sun (ys3535)

Problem Statement
Classifying data is a common task in machine learning. When we need to perform

linear/non-linear classification problems on a large dataset, we usually use support vector

machine algorithms, in which a data point is usually viewed as a p-dimensional vector, and we

want to know whether we can separate a bunch of points with a hyperplane. There are many

hyperplanes that can be used to classify the data, but we want to pick one such that the distance

from it to the nearest data point on each side is minimized. It is usually difficult to determine the

best hyperplane, since its goal is to minimize a function that may be analytically complex, so we

can use gradient descent to find the optimal weights. In gradient descent, it requires a moving

direction and a learning rate, then the algorithm can slowly arrive at the local or global

minimum.

Algorithm

Overview
Gradient descent is used to minimize an objective function, in our case, the objective function of

a support vector machine algorithm is

Standard gradient descent method would perform the following iterations:

W is the model parameters, the weights of features , and η is the learning rate. Usually it requires

multiple iterations until the weights start to converge to the optimal value.

Because gradient descent requires the calculation of the derivative to each datapoint in the

dataset, and then sum them up, so the time complexity is O(Iteration * Data Dimension), one

way to utilize the multiple cores of the computer to speed up the calculating process is stochastic

gradient descent, instead of using the whole dataset to update the weight, it randomly pick a

smaller batch of datasets, update the weights, then calculate the average weights, use the average

as the starting point for the next iteration. The pseudo code is as following:

Implementation
We started by using a sequential implementation of stochastic gradient descent on GitHub that

runs on a small data set. The Train.hs file initially contained the sequential implementation,

where three type aliases were defined:

type Sample = R.Sample Int
type Model = (FullVector, Double, Double)
type PredLoss = (Double, Double, Double)

The Sample type represents one data point, and it is defined by both the sample defined in

Read.hs, which consists of a vector of weights and a Double for the response, and an Int. The

Model type defines the model that our algorithm determines as the best fit for the given data set.

Model is a 3-tuple that has a Vector which represents the weights for the parameters for the curve

that fits the data set, a Double that represents the scaling factor for the weights, and another

Double which represents the offset term for the model. The PredLoss type tracks the value for

the estimated error of our model. It is a 3-tuple with three Double values representing the value

of the loss function, the cost of the model, and the predicted error value.

Our goal for this project is to find ways to parallelize this implementation by looking for relevant

parts of the sequential implementation from GitHub that would likely speed up the algorithm,

and use techniques learned during the course to make these computations run in parallel. We

achieve the best results from parallelizing the train function, which performs iterations of the

stochastic gradient descent algorithm and returns a model that makes accurate predictions on the

input data set.

train :: Loss -- loss and dloss function
-> [Sample] -- list of samples
-> Double -- regularizer
-> Int -- epochs
-> Model

train l x lambda epochs = foldl (go) wParam0 [1..epochs]
where
go wParam _ = trainMany (dloss l) x lambda wParam eta

dim = R.dimSample x
wParam0 = initParam dim

n = min 1000 . length $ x

n=length $ x
fTrain = trainMany (dloss l) (take n x) lambda wParam0
fTest = testMany (loss l) (take n x) lambda
eta0 = determineEta0 (fTest . fTrain) (2, 1, 2)
eta = map (\t -> eta0 / (1 + lambda * eta0 * t)) [0..]

Our main focus is this implementation of the train function, which takes Loss function l, list of

Samples x, a Double as a lambda value for regularization, an Int number of epochs or iterations,

and returns a classification Model. It trains the Model using the trainMany function, which takes

a derivative of the loss function, a list of samples, a regularization value, and the Model at the

current iteration. We removed the testing functionality when parallelizing this problem because

the bulk of the computation happens during training epochs. Another change we make between

the sequential and parallel implementations is the determination of the Eta value, which

represents the learning rate, or the rate of descent at which the Model parameters change after

each SGD iteration. Eta can be tuned in various ways as the algorithm progresses, but we choose

to keep it constant. Note that the SGD implementation is found in the trainMany function

below, which uses the trainOne function.

trainMany :: (Double -> Double -> Double) -- dloss function
-> [Sample] -- list of samples
-> Double -- regularizer
-> Model -- current model parameter
-> [Double] -- sgd gain eta for each iteration (or

sample)
-> Model

trainMany dloss x lambda wParam0 eta= foldl go wParam0 $ zip x eta
where
go wParam (xt, etat) = trainOne dloss xt lambda wParam etat

trainOne :: (Double -> Double -> Double) -> Sample -> Double -> Model -> Double ->
Model
trainOne dloss (x, y) lambda (w, wDiv, wBias) eta = (w'', wDiv'', wBias')
where
s = (dotFS w x) / wDiv + wBias
d = dloss s y
wDiv' = wDiv / (1 - eta * lambda)
(w', wDiv'') = renorm w wDiv'
w'' = addFS w' . mul x $ eta * d * wDiv''
wBias' = wBias + d * eta * 0.01

trainOne takes the derivative of the loss function, one Sample, one regularizer, the current

Model, and the learning rate Eta, and returns the model after one epoch. The SGD computation

happens when calculating the s value, which takes the dot product of the Model weights w and

the current sample, normalizes it by dividing by wDiv, and adds wBias as the bias term. This

value is used to find d, which is a value that is necessary to adjust the Model weights. The new

normalizing term wDiv’is adjusted by the learning rate and the lambda value provided as input.

The final Model parameters are calculated after renormalizing the weights and adjusting the bias

term.

Dataset
The dataset utilized for this project is the Red Wine Quality Dataset, sourced from Kaggle,

comprising 1599 samples of red wines. Originally a multi-class classification task, the dataset

was transformed into a binary classification problem by introducing a threshold at a wine quality

rating of 6. This threshold defines two quality categories: 'good' (quality ratings greater than or

equal to 6) and 'not good' (quality ratings below 6). To prepare the data for analysis, the

Min-Max Scaler was employed to normalize the physicochemical properties of the wines. The

dataset was further formatted into a sparse vector format, consistent with the original

implementation, and saved as 'normalized_data_binary.dat'. The dataset exhibits a class

imbalance, with 'good' quality wines being in the minority, which poses a challenge for

classification. However, it is considered suitable for the project's goal of parallelizing the

stochastic gradient descent (SGD) algorithm to enhance its speed and efficiency. This dataset

offers a real-world scenario for evaluating the impact of parallelization techniques on machine

learning algorithms.

Parallelism

Repa

We tried to use Repa, a package for high performance parallel array calculations to improve the

performance of the code, since our code involves a lot of vector add, multiplication and dot

product calculation.

trainOne :: (Double -> Double -> Double) -- dloss function

-> SampleFull -- single input and response (x, y)

-> Double -- regularizer

-> IO Model -- current model parameter

-> Double -- sgd gain eta

-> IO Model

trainOne dloss (x, y) lambda para eta = do

(w, wDiv, wBias)<-para

array <- R.computeUnboxedP $ R.zipWith (*) w x

let summ =R.sumAllS array

let s = summ / wDiv + wBias

let d = dloss s y

let wDiv' = wDiv / (1 - eta * lambda)

(w', wDiv'') <- renorm w wDiv'

sc <- scale x (eta * d * wDiv'')

sc' <- now $ sc

w'' <- addFF w' sc'

w'''<-now $ w''

let wBias' = wBias + d * eta * 0.01;

return (w''',wDiv'',wBias')

Since repa uses a different data type than the original code which uses vector, we need to

redefine all the basic array calculations, in trainOne function, we need to calculate the dot

product of two arrays, scaling an array by an integer multiplier, add two arrays element-wise, all

those calculations will be performed using the repa parallel function, however in repa, to avoid

nested parallelism, we have to evaluate the value after each calculation. Below is a list of the

methods we use for array calculation.

import Data.Array.Repa as R

import Control.Monad

type FullArray = Array U DIM1 Double

dotFF :: FullArray -> FullArray -> IO Double

dotFF u v = R.sumAllP $ R.zipWith (*) u v

addFF :: FullArray -> FullArray -> IO FullArray

addFF u v= R.computeUnboxedP $ R.zipWith (+) u v

scale :: FullArray -> Double -> IO FullArray

scale u d = R.computeUnboxedP $ R.map (*d) u

l2norm :: FullArray -> IO Double

l2norm v = sqrt <$> (dotFF v v)

However when we test the code on multiple cores, the running time increases as the core number

increases. If we look at the threadscope for the implementation on 4 cores, as we zoom in, it

seems each thread wakes up but got blocked immediately. We will investigate and experiment

more in the future.

Strategies
As our next approach of parallelizing the algorithm, we use Haskell's Control.Parallel.Strategies

module, particularly the parMap rdeepseq function, to efficiently process chunks of the training

dataset in parallel. The parMap rdeepseq function applies a specified function, in our case

trainBatch, to each chunk of data concurrently across multiple processor cores. This function

updates the model parameters for each sample within the chunk using the trainOne function,

which implements the core SGD logic.

The parallel execution is controlled by Haskell's runtime system, which schedules and runs these

computations on available processor cores. The rdeepseq strategy ensures that each chunk is

completely evaluated before moving to the next step, which is crucial for correctness and

performance in a parallel setting.

train :: Loss -> [Sample] -> Double -> Int -> Model

train l x lambda epochs = foldl' go wParam0 [1..epochs]

where

go wParam _ = trainEpoch wParam

wParam0 = initParam $ R.dimSample x

eta = calculateEta lambda epochs

--trainEpoch wParam = trainBatch wParam (x, eta) -- seq

trainEpoch wParam =

let chunks = chunkData chunkSize x

updatedModels = parMap rdeepseq (trainBatch wParam) (zip chunks (repeat

eta))

in combineModels updatedModels wParam0

-- parallel

trainBatch wParam (samples, etaBatch) =

foldl' (\wParam' sample -> trainOne (dloss l) sample lambda wParam' etaBatch)

wParam samples

After processing all chunks, the updated models from each chunk are combined. The

combination is not a simple summation; rather, it involves averaging the parameters across all

models. This step is essential to accurately represent the collective learning from all data chunks.

The averaging step involves summing the corresponding parameters from each model and then

scaling them down by the number of models. This results in a final, averaged model that is

representative of the entire dataset. This method allows for a more efficient and scalable training

process compared to a purely sequential approach, especially with large datasets.

combineModels :: [Model] -> Model -> Model

combineModels models wParam0 =

let numModels = fromIntegral $ length models

summedModels = foldl' addModels wParam0 models

in scaleModel summedModels numModels

addModels :: Model -> Model -> Model

addModels (w1, div1, bias1) (w2, div2, bias2) =

(addFF w1 w2, div1 + div2, bias1 + bias2)

scaleModel :: Model -> Double -> Model

scaleModel (w, divisor, bias) scaleFactor =

(scale w (1 / scaleFactor), divisor / scaleFactor, bias / scaleFactor)

In the original SGD implementation, the learning rate (eta) was dynamically adjusted using a

complex method involving the determineEta0 function (see original github repo). This approach

fine-tuned eta based on model performance across varying eta values. For detailed

implementation and context, please refer to the Train.hs file of the original GitHub repository.

In this revised implementation, a simplified method for calculating the learning rate (eta) was

adopted. This approach, termed calculateEta, determines eta statically for each epoch based on a

predetermined initial value (eta0) and the total number of epochs. This simplification was crucial

for efficient parallelization of the training process, as it reduced the computational complexity,

allowing for more consistent and scalable performance across multiple processing units. The

trade-off here was the flexibility of dynamic eta adjustment for potential performance gains, a

common consideration in parallel algorithm design where simplicity often leads to better scaling

and performance, particularly with large datasets.

calculateEta :: Double -> Int -> Double

calculateEta lambda epochs =

let eta0 = 1 -- Modify this to determine the initial eta

in eta0 / (1 + lambda * eta0 * fromIntegral epochs)

Based on our evaluations, detailed in the following section, this parallelization approach proved

effective. The performance improvements were notably consistent with increasing number of

cores, underscoring the efficiency and scalability of the adopted parallel strategy in the SGD

algorithm.

Evaluation
For evaluation, we ran our program on a MacBookPro with the processor of 2 GHz Intel Core i5

and hyperthreaded 4 cores.

On the command line:

stack exec -- svm-sgd-parallel-exe normalized_data_binary.dat --lambda 0.00001
--epochs 200 +RTS -l -N4 -RTS

The above runs our executable after building it using stack build in the project directory, using

the red wine quality data set that is preprocessed, taking in the lambda value (default 1e-5), the

number of epochs (default 200) for training, and the number of cores to use as inputs.

Experiment

Our performance evaluation of the parallelized SGD training function with various chunk sizes

revealed that a chunk size of 200 optimally balances workload and processing efficiency,

especially evident in the marked speedup when increasing from 2 to 3 cores. Larger chunk sizes

allow for more extensive computation per thread, assuming uniform distribution across cores.

This results in reduced overhead and maximizes the utilization of parallel processing capabilities,

making chunk size 200 a particularly effective choice for our implementation.

The figure in the report displays the speedup analysis, derived from averaging execution times of

ten consecutive runs for varying core counts, using the identified optimal chunk size of 200. This

graph effectively demonstrates how the number of cores influences the acceleration of our

parallelized SGD training. It provides insightful data on how effectively our parallelization

scales, reflecting the benefits and limitations of adding more cores in terms of performance

enhancement in our training algorithm. As we can see, after four cores, the speedup is not

improving any more, because the maximum number of cpu cores on our laptop is four.

This figure shows the sequential execution of the SGD training algorithm, achieved by running a

non-parallelized version of the training function (trainEpoch wParam = trainBatch wParam

(x, eta) -- seq). This sequential approach, utilized for the same dataset as the parallel

version, exhibits a consistent training duration of approximately 15-16 seconds. This timing

serves as a baseline to compare and contrast with the performance of the parallelized version,

illustrating the efficiency gains achieved through parallel processing.

The behavior of the program using 4 cores suggests that there is a heavy load on the garbage

collector earlier during execution. When running the training in parallel, the bulk of the

computation happens after the initial garbage collection, and this behavior is consistent in every

thread. This suggests that there is a lot of space allocated for the functions that are used within

the train function, since there are many subroutines that are part of the parallelized

computation. For the sequential one, it loads all the datapoints into the function, that’s why it

spends a significant amount of time on garbage collection. For parallel versions, it only loads

smaller chunks of data into each time, so it wastes less time on garbage collection. And if we

compare the productivity, it is gradually getting slower with more cores, but the mutator time is

reduced significantly, so the parallelism is still performing well.

References
[1]Original Haskell Code without parallelism: Github repo :

https://github.com/daz-li/svm_sgd_haskell

[2]Dataset: https://www.kaggle.com/datasets/ryanholbrook/dl-course-data?select=red-wine.csv

[3]Martin A. Zinkevich. Parallelized Stochastic Gradient Descent. NeurIPS 2010

https://www.kaggle.com/datasets/ryanholbrook/dl-course-data?select=red-wine.csv

Code Listing
As mentioned earlier, we prioritize efficient parallelization of the SGD training process in this project. As
a result, the testing phase present in the original implementation has been commented out to focus solely
on optimizing the training procedure. This approach allows for a more concentrated evaluation of the
parallelized training's effectiveness and performance.

app/Main.hs
{-# LANGUAGE DeriveDataTypeable, RecordWildCards #-}
module Main where

import qualified Data.ByteString.Char8 as C

import System.Console.CmdArgs

import System.Exit

import Control.Monad (when)

import qualified Read as R

import qualified Train as T

import qualified LossFun as L

import Data.Time

data SgdOpts = SgdOpts

{ trainFile :: String

-- , testFile :: String

, lambda :: Double

, epochs :: Int

} deriving (Data, Typeable, Show, Eq)

sgdOpts :: SgdOpts

sgdOpts = SgdOpts

{ trainFile = def &= argPos 0 &= typ "TRAINING-FILE"

--, testFile = def &= typ "TESTING-FILE" &= help "Testing data" &= name "T" &= name

"test"

, lambda = 1e-5 &= help "Regularization parameter, default 1e-5"

, epochs = 200 &= help "Number of training epochs, default 200"

}

getOpts :: IO SgdOpts

getOpts = cmdArgs $ sgdOpts

&= versionArg [explicit, name "version", name "v", summary _PROGRAM_INFO]

&= summary (_PROGRAM_INFO ++ ", " ++ _COPYRIGHT)

&= help _PROGRAM_ABOUT

&= helpArg [explicit, name "help", name "h"]

&= program _PROGRAM_NAME

_PROGRAM_NAME :: String

_PROGRAM_NAME = "svmsgd"

_PROGRAM_VERSION :: String

_PROGRAM_VERSION = "0.0.1"

_PROGRAM_INFO :: String

_PROGRAM_INFO = _PROGRAM_NAME ++ " version " ++ _PROGRAM_VERSION

_PROGRAM_ABOUT :: String

_PROGRAM_ABOUT = "svm + sgd + haskell"

_COPYRIGHT :: String

_COPYRIGHT = "(C) Dazhuo Li 2013"

main :: IO ()

main = do

opts <- getOpts

optionHandler opts

optionHandler :: SgdOpts -> IO ()

optionHandler SgdOpts{..} = do

when (null trainFile) $ putStrLn "--trainFile is blank!" >> exitWith (ExitFailure

1)

when (lambda <= 0 || lambda > 10000) $ putStrLn "--lambda must be in (0, 1e4]" >>

exitWith (ExitFailure 1)

when (epochs <= 0 || epochs > 1000000) $ putStrLn "--epochs must be in (0, 1e6]" >>

exitWith (ExitFailure 1)

exec SgdOpts{..}

exec :: SgdOpts -> IO ()

exec SgdOpts{..} = do

contents <- C.readFile trainFile

let dat = case R.read contents :: Maybe [R.Sample Int] of

Nothing -> error "Wrong input format"

Just x -> x

start <- getCurrentTime

let model = T.train L.logLoss dat lambda epochs

--let predLoss = T.testMany (L.loss L.logLoss) dat lambda model

print model

--print predLoss

end <- getCurrentTime

let diff = diffUTCTime end start

putStrLn $ "Execution Time: " ++ (show diff)

src/Train.hs
module Train (train) where

import qualified Read as R

import Vector

import LossFun

import Control.Parallel.Strategies

import Data.List (foldl')

type Sample = R.Sample Int

type Model = (FullVector, Double, Double) -- model parameter (w, wDivsor, wBias)

--type PredLoss = (Double, Double, Double) -- prediction error on the Model

(los, cost, num.error)

type Chunk a = [a]

-- Function to chunk the data

chunkData :: Int -> [a] -> [Chunk a]

chunkData _ [] = []

chunkData n xs = let (chunk, rest) = splitAt n xs in chunk : chunkData n rest

-- Constants

chunkSize :: Int

chunkSize = 200 -- chosen through multiple tests

initParam :: Int -> Model

initParam dimVar = (rep (dimVar + 1) 0, 1, 0)

train :: Loss -> [Sample] -> Double -> Int -> Model

train l x lambda epochs = foldl' go wParam0 [1..epochs]

where

go wParam _ = trainEpoch wParam

wParam0 = initParam $ R.dimSample x

eta = calculateEta lambda epochs

--trainEpoch wParam = trainBatch wParam (x, eta) -- seq

trainEpoch wParam =

let chunks = chunkData chunkSize x

updatedModels = parMap rdeepseq (trainBatch wParam) (zip chunks (repeat

eta))

in combineModels updatedModels wParam0

-- parallel

trainBatch wParam (samples, etaBatch) =

foldl' (\wParam' sample -> trainOne (dloss l) sample lambda wParam' etaBatch)

wParam samples

combineModels :: [Model] -> Model -> Model

combineModels models wParam0 =

let numModels = fromIntegral $ length models

summedModels = foldl' addModels wParam0 models

in scaleModel summedModels numModels

addModels :: Model -> Model -> Model

addModels (w1, div1, bias1) (w2, div2, bias2) =

(addFF w1 w2, div1 + div2, bias1 + bias2)

scaleModel :: Model -> Double -> Model

scaleModel (w, divisor, bias) scaleFactor =

(scale w (1 / scaleFactor), divisor / scaleFactor, bias / scaleFactor)

calculateEta :: Double -> Int -> Double

calculateEta lambda epochs =

let eta0 = 1 -- Modify this to determine the initial eta

in eta0 / (1 + lambda * eta0 * fromIntegral epochs)

trainOne :: (Double -> Double -> Double)

-> Sample

-> Double

-> Model

-> Double

-> Model

trainOne dloss (x, y) lambda (w, wDiv, wBias) eta = (w'', wDiv'', wBias')

where

s = (dotFS w x) / wDiv + wBias

d = dloss s y

wDiv' = wDiv / (1 - eta * lambda)

(w', wDiv'') = renorm w wDiv'

w'' = addFS w' . mul x $ eta * d * wDiv''

wBias' = wBias + d * eta * 0.01

renorm :: FullVector -> Double -> (FullVector, Double)

renorm w wDiv

| wDiv == 1.0 || wDiv <= 1e5 = (w, wDiv)

| otherwise = (scale w $ 1 / wDiv, 1.0)

{-wnorm (w, wDiv, wBias) = (Vector.dot w w) / wDiv / wDiv

trainMany :: (Double -> Double -> Double) -- dloss function

-> [Sample] -- list of samples

-> Double -- regularizer

-> Model -- current model parameter

-> [Double] -- sgd gain eta for each iteration (or

sample)

-> Model

trainMany dloss x lambda wParam0 eta= foldl go wParam0 $ zip x eta

where

go wParam (xt, etat) = trainOne dloss xt lambda wParam etat

testMany :: (Double -> Double -> Double) -- loss function

-> [Sample] -- list of samples

-> Double -- regularizer

-> Model -- model parameter

-> PredLoss

testMany loss x lambda wParam = (los, cost, nerr)

where

los = ploss / fromIntegral (length x)

nerr = (fromIntegral pnerr) / fromIntegral (length x)

cost = los + 0.5 * lambda * (wnorm wParam)

(ploss, pnerr) = (\(t1, t2, _) -> (sum t1, sum t2)) . unzip3 . map go $ x

where

go x = testOne loss x lambda wParam

testOne :: (Double -> Double -> Double) -- loss function

-> (SparseVector, Double) -- single input and response (x, y)

-> Double -- regularizer

-> Model -- model parameter

-> (Double, Int, Double)

testOne loss (x, y) lambda (w, wDiv, wBias) = (ploss, pnerr, s)

where

s = (dotFS w x) / wDiv + wBias

ploss = loss s y

pnerr = if s * y <= 0 then 1 else 0

-}

src/Read.hs
{-# LANGUAGE TypeSynonymInstances #-}

module Read where

import qualified Data.ByteString.Char8 as C

import Data.ByteString.Lex.Fractional (readDecimal)

import qualified Vector as V

import Data.Array.Repa as R hiding (map)

type SparseVector a = [(a, Double)]

type Response = Double

type Sample a = (SparseVector a, Response)

type FullArray = Array U DIM1 Double

type SampleFull=(FullArray,Response)

-- | On error handling

-- Error handling is done by Maybe. There are pros and cons

-- of any approach: Maybe, Either, Excpetion. e.g. facing

-- error, Maybe returns Nothing, which is un-informative about

-- which part of which line has the wrong format. More ref:

-- http://book.realworldhaskell.org/read/error-handling.html

-- http://blog.ezyang.com/2011/08/8-ways-to-report-errors-in-haskell-revisited/

class Reads a where

read :: C.ByteString -> Maybe [Sample a]

read = sequence . map readSample . C.lines

readSample :: C.ByteString -> Maybe (Sample a)

readSample str = fmap ((,)) feas <*> response

where

tokens = C.words str

feas = sequence . map readPair . tail $ tokens

response = readDouble' . head $ tokens

readPair :: C.ByteString -> Maybe (a, Double)

readPair str = let xs = C.split ':' str

in if length xs /= 2

then Nothing

else let (x:y:_) = xs

in fmap (,) (readId x) <*> readDouble' y

readId :: C.ByteString -> Maybe a

-- | On TypeSynonymInstances

-- http://stackoverflow.com/a/2125769/1311956

readFull :: C.ByteString -> Maybe [SampleFull]

readFull = sequence . map readSampleFull . C.lines

readSampleFull:: C.ByteString -> Maybe (SampleFull)

readSampleFull str = do

let tokens = C.words str

let feas = listToUnboxedArray . map readDouble' . tail $ tokens

response <- readDouble' . head $ tokens

return (feas,response)

listToUnboxedArray :: [Maybe Double] -> Array U DIM1 Double

listToUnboxedArray values = fromListUnboxed (Z :. length values) (map handleMaybe

values)

where

handleMaybe :: Maybe Double -> Double

handleMaybe (Just x) = x

handleMaybe Nothing = 0.0 -- Choose a default value for Nothing

instance Reads Int where

readId = readInt'

instance Reads C.ByteString where

readId = Just . id

readDouble' :: C.ByteString -> Maybe Double

readDouble' bs =

case C.uncons bs of

Just ('-', rest) -> fmap negate (fmap fst (readDecimal rest))

_ -> fmap fst (readDecimal bs)

readInt' :: C.ByteString -> Maybe Int

readInt' str = case C.readInt str of

Nothing -> Nothing

Just (x, y) -> if C.null y then Just x else Nothing

dimSample :: [Sample Int] -> Int

dimSample = foldl (\x y -> max x . V.dim $ y) 0 . fst . unzip

src/LossFun.hs
module LossFun where

data Loss = Loss {

loss :: Double -> Double -> Double

-- -dloss(a,y)/da

, dloss :: Double -> Double -> Double

}

-- logloss(a,y) = log(1+exp(-a*y))

logLoss :: Loss

logLoss = Loss {

loss = loss'

, dloss = dloss'

}

where

loss' a y

| z > 18 = exp (-z)

| z < -18 = -z

| otherwise = log $ 1 + exp (-z)

where z = a*y

dloss' a y

| z > 18 = y * exp (-z)

| z < -18 = y

| otherwise = y / (1 + exp z)

where z = a*y

src/Vector.hs
module Vector where

--

http://stackoverflow.com/questions/17892065/mutable-random-access-array-vector-with-hi

gh-performance-in-haskell

--

http://haskell.1045720.n5.nabble.com/fishing-for-ST-mutable-Vector-examples-td4333461.

html

-- import qualified Data.IntMap as IntMap

import qualified Data.Vector.Unboxed as VU

-- type SparseVector = IntMap

type SparseVector = [(Int, Double)]

type FullVector = VU.Vector (Double)

-- type Sample = (SparseVector, Double) -- (input, response)

dotFS :: FullVector -> SparseVector -> Double

dotFS u v = foldl go 0 v

where

go :: Double -> (Int, Double) -> Double

go acc (ind, val) = acc + u VU.! ind * val

dotFS' :: FullVector -> SparseVector -> Double

--dotFS' u v = sum . zipWith (*) vals . VU.toList . map (\x -> u VU.! x) $ inds

dotFS' u v = sum . zipWith (*) vals . slice u $ inds

where

(inds, vals) = unzip v

slice :: FullVector -> [Int] -> [Double]

slice u v = map (\x -> u VU.! x) $ v

addFS :: FullVector -> SparseVector -> FullVector

addFS = VU.accum (+)

addFF :: FullVector -> FullVector -> FullVector

addFF=VU.zipWith (+)

dot :: FullVector -> FullVector -> Double

dot u v = VU.sum $ VU.zipWith (*) u v

scale :: FullVector -> Double -> FullVector

scale u d = VU.map (*d) u

dim :: SparseVector -> Int

dim = foldl1 max . fst . unzip

rep :: Int -> Double -> FullVector

rep l x = VU.replicate l x

mul :: SparseVector -> Double -> SparseVector

mul x d = map (\(a1, a2) -> (a1, a2*d)) x

normalizeL2 :: SparseVector -> SparseVector

normalizeL2 v = mul v $ 1 / (l2norm v)

l2norm :: SparseVector -> Double

l2norm v = sqrt . sum . zipWith (\x y -> snd x * snd y) v $ v

src/Vector.hs
​​module Vector where

--

http://stackoverflow.com/questions/17892065/mutable-random-access-array-vector-with-hi

gh-performance-in-haskell

--

http://haskell.1045720.n5.nabble.com/fishing-for-ST-mutable-Vector-examples-td4333461.

html

-- import qualified Data.IntMap as IntMap

import qualified Data.Vector.Unboxed as VU

-- type SparseVector = IntMap

type SparseVector = [(Int, Double)]

type FullVector = VU.Vector (Double)

-- type Sample = (SparseVector, Double) -- (input, response)

dotFS :: FullVector -> SparseVector -> Double

dotFS u v = foldl go 0 v

where

go :: Double -> (Int, Double) -> Double

go acc (ind, val) = acc + u VU.! ind * val

dotFS' :: FullVector -> SparseVector -> Double

--dotFS' u v = sum . zipWith (*) vals . VU.toList . map (\x -> u VU.! x) $ inds

dotFS' u v = sum . zipWith (*) vals . slice u $ inds

where

(inds, vals) = unzip v

slice :: FullVector -> [Int] -> [Double]

slice u v = map (\x -> u VU.! x) $ v

addFS :: FullVector -> SparseVector -> FullVector

addFS = VU.accum (+)

addFF :: FullVector -> FullVector -> FullVector

addFF=VU.zipWith (+)

dot :: FullVector -> FullVector -> Double

dot u v = VU.sum $ VU.zipWith (*) u v

scale :: FullVector -> Double -> FullVector

scale u d = VU.map (*d) u

dim :: SparseVector -> Int

dim = foldl1 max . fst . unzip

rep :: Int -> Double -> FullVector

rep l x = VU.replicate l x

mul :: SparseVector -> Double -> SparseVector

mul x d = map (\(a1, a2) -> (a1, a2*d)) x

normalizeL2 :: SparseVector -> SparseVector

normalizeL2 v = mul v $ 1 / (l2norm v)

l2norm :: SparseVector -> Double

l2norm v = sqrt . sum . zipWith (\x y -> snd x * snd y) v $ v

