
Naive Bayes Classifier with Feature Selection

Jiakai Xu ax2155, Amy Qi xq2224

December 21, 2023

Contents

1 Introduction 2
1.1 Naive Bayes Classifier . 2
1.2 Assumption about Our Data . 2
1.3 Feature Selection with Cross Validation . 2
1.4 Pseudocode . 3

2 Sequential Version 3
2.1 Data Generation . 3
2.2 Feature Selection . 4
2.3 K-fold Cross Validation . 4

3 Parallel Version 5
3.1 Data Generation . 5
3.2 Feature Selection . 5
3.3 K-fold Cross Validation . 6

4 Performance Evaluation 6
4.1 Different Strategies . 6
4.2 Different Numbers of Cores . 8
4.3 Different Data Sizes . 8
4.4 Different Numbers of Folds . 9

5 Future Works 10

6 Appendix 11
6.1 Figures . 11
6.2 Table . 12
6.3 Code . 12

1

1 Introduction

1.1 Naive Bayes Classifier

The Naive Bayes classifier is a probabilistic machine learning model based on Bayes’ the-
orem. It is widely used for classification tasks, particularly in natural language processing
and document categorization. The term ”naive” is employed because the model makes a
strong assumption of independence among the features, which simplifies the computation
and facilitates efficient training.

To maximize the probability that given observations X the correct is Y , we need to find the
maximum value P (Y |X) out of all classes.

1.2 Assumption about Our Data

Since the naive Bayes classifier has the assumption that our data follows some distribution,
we assume that for each feature in our dataset, the values follow a normal distribution, de-
fined by its mean and variance.

The reason why we choose normal distribution is that, by the Central Limit Theorem (men-
tion it here because it’s pretty cool ,), the distribution of a normalized version of the sample
mean converges to a standard normal distribution. This indicates that if we have a lot of
data, it is safe to assume that the distribution resembles a normal distribution. In fact, many
things in nature follow a normal distribution, including this classical Iris Dataset people use
for classification programs.

In our program, we implemented both the data generator that generates data following a
normal distribution and a CSV file reader to read input files. The reason why we choose to
generate data instead of relying on the CSV reader is that we do not want to program to be
IO-bound.

1.3 Feature Selection with Cross Validation

This Haskell program’s primary contribution lies in its implementation of feature selection
with cross-validation. The goal is to determine the most ”predictive” feature among various
options. The process involves training numerous models using different features and com-
paring their performances. To ensure that the test data remains untouched until the actual
testing stage, a portion of the training data is set aside as validation data. This dataset
serves as the ”fake” test data for evaluating various models, and the method is called cross
validation.

2

https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Central_limit_theorem
https://archive.ics.uci.edu/dataset/53/iris
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation

1.4 Pseudocode

for feature in features: do
for train-validation split: do

use training data (of this feature) to train the model
use validation data (of this feature) to test the model
get error rate

end for
average error rate for this feature

end for
choose the feature with the minimal averaged error rate

2 Sequential Version

2.1 Data Generation

This is the function we implemented to generate data. We plant a ”best feature” in our data
manually, by using this feature as a base feature, where different labels get different normal
distributions. Then using this base feature, we generated other features by adding different
noise vectors onto the base feature. In theory, if we implement our program correctly, the
best feature returned should always be the base feature since it is the only feature vector
that follows a strict normal distribution. A graph below with size of dataset=3 and number
of features=5 is presented to demonstrate our idea.

Figure 1: Generate Data

Here is the code to generate the dataset. We will parallelize it in the next section. Apart
from this data generator, we also have a CSV reader to read files. This part of the code is
omitted but you can find it in the appendix section.

generateDataset :: Int -> Int -> [(Double, Double)] -> [Double] -> Dataset

generateDataset totalSize maxValue featureParams noisesArray =

let labels = concatMap (replicate (totalSize `div` maxValue))

[1..maxValue]↪→

baseFeature = concatMap (uncurry (generateNormalFeature (totalSize

`div` maxValue))) featureParams↪→

features = map (\noise -> zipWith (+) (generateNormalFeature totalSize

0 noise) baseFeature) noisesArray↪→

in zipFeaturesToDataset labels features

3

2.2 Feature Selection

To conduct feature selection, we call evaluateFeature on each possible choice of features. We
store the values returned by evaluateFeature, which are error rates, in a list, and find the
minimum value. The feature corresponding to this value is the best feature since it results
in the smallest error rates.

In our sequential implementation, we used list comprehension to achieve similar functionality
of a loop in imperative programming. This part will be refactored later to enable parallelism.

findBestFeature :: Int -> Dataset -> (Int, ErrorRate)

findBestFeature k dataset =

let numFeatures = length (snd (head dataset))

errorRates = map (\idx -> (idx, evaluateFeature k idx dataset)) [0 ..

numFeatures - 1]↪→

in minimumBy (comparing snd) errorRates

evaluateFeature :: Int -> Int -> Dataset -> ErrorRate

evaluateFeature k featureIndex dataset =

let featureOnly = extractFeature dataset featureIndex

in kFoldCrossValidation k featureOnly

2.3 K-fold Cross Validation

Similarly, in the sequential implementation, we used list comprehension to iterate through
each possible way of train-validation split. In each iteration, we train and evaluate the model,
then we take the average of all models trained on this feature.

kFoldCrossValidation :: Int -> Dataset -> ErrorRate

kFoldCrossValidation k dataset =

let errorRates = map (\i -> trainAndValidate (splitData i k dataset)) [0

.. k - 1]↪→

in averageErrorRates errorRates

trainAndValidate :: ([LabeledFeatures], [LabeledFeatures]) -> ErrorRate

trainAndValidate tvPair =

let trainingData = fst tvPair

validationData = snd tvPair

model = trainModel trainingData

predicted = predict model (extractFeatures validationData)

in calculateErrorRate predicted (extractLabels validationData)

4

3 Parallel Version

Below are some strategies we used for the parallel version of our program, but we certainly
experimented with a lot more strategies. In the next section Performance Evaluation we
will compare the performance of different strategies. Also, we have attached the code for all
strategies we have tried at the end of this report.

3.1 Data Generation

Here is a parallelized version we wrote for data generation. However, this version is not
actually used in our final implementation because it triggers too many sparks, and a lot
of them are garbage collected (See Table 2 in Appendix for the statistics). Without this
parallelized data generator, our program runs faster. Therefore we stick to the sequential
generator in the previous section.

generateDatasetParallel :: Int -> Int -> [(Double, Double)] -> [Double] ->

Dataset↪→

generateDatasetParallel totalSize maxValue featureParams noisesArray =

let labels = concat $ parMap rpar (replicate (totalSize `div` maxValue))

[1..maxValue]↪→

baseFeature = concat $ parMap rpar (uncurry (generateNormalFeature

(totalSize `div` maxValue))) featureParams↪→

features = parMap rpar (\noise -> zipWith (+) (generateNormalFeature

totalSize 0 noise) baseFeature) noisesArray↪→

in plainDatasetParallel labels features

3.2 Feature Selection

We refactored the code for the sequential version to use parMap in feature selection. More
experiments using other strategies can be found in the next section.

findBestFeature :: Int -> Dataset -> (Int, ErrorRate)

findBestFeature k dataset =

let numFeatures = length (snd (head dataset))

errorRates = parMap rpar (\idx -> (idx, evaluateFeature k idx

dataset)) [0 .. numFeatures - 1]↪→

-- multiple implementations other than parMap

-- details in section 4 Performance Evaluation

in minimumBy (comparing snd) errorRates

5

3.3 K-fold Cross Validation

We refactored the code for the sequential version to use parListChunk in k-fold cross valida-
tion. More experiments using other strategies can be found in the next section.

kFoldCrossValidationPLC :: Int -> Dataset -> ErrorRate

kFoldCrossValidationPLC k dataset =

let chunkSize = ceiling ((fromIntegral k / 4) :: Double)

errorRates = runEval $

parListChunk chunkSize rpar $ map (\i -> trainAndValidate

(splitData i k dataset)) [0 .. k - 1]↪→

-- multiple implementations other than parListChunk

-- details in section 4 Performance Evaluation

in averageErrorRates errorRates

4 Performance Evaluation

We tested the correctness of our classifier using the Iris Dataset with the CSV reader, and
achieved a test error rate of less than 1%, which should guarantee the soundness of our pro-
gram. However, the size of the Iris Dataset is just 150, which is not so interesting for parallel
programming. Thus, we only focus on the data generator in performance evaluation.

All tests below are run in the following environment setup:
Apple M2 Chip (4 Efficiency Cores, 8 Performance Cores, Single Threaded), 32GB RAM

4.1 Different Strategies

Consider the algorithm described in Section 1.4, there are two loops where we can apply dif-
ferent paralleling strategies: one is the outer loop where we iterate through different features,
and the other one is the inner loop where we iterate through different ways for train-validation
split (i.e. different folds). For different features, we tried parMap and parBuffer. For differ-
ent validation folds, we tried parMap, parListChunk and parBuffer. The reason why we did
not implement parListChunk on the outer loop is that in the setting below, we only have 5
features, and parListChunk behaves very similar to parMap.

Training data Size: 1,000,000

Test Data Size: 100

Number of Labels: 5

Number of Features: 5

Number of Folds: 10

Number of Cores:8

6

https://archive.ics.uci.edu/dataset/53/iris

of Features=m # of Folds=n converted overflowed dud GC’d fizzled speed conversion%

parMap (n) 98 0 0 4 8 10.819 89.1%
parMap(m) parListChunk (4) 68 0 0 4 8 10.823 85.0%

parBuffer (n/2) 71 0 0 2 37 11.181 64.5%
parMap (n) 94 0 5 3 8 11.584 85.5%

parBuffer(m/2) parListChunk (4) 64 0 5 2 9 11.334 80.0%
parBuffer (n/2) 68 0 5 1 36 11.63 61.8%

Table 1: N=8 Result with Different Strategies

As demonstrated in Table 1, we achieved high conversion rates and few sparks ended up in
overflowed/dud/GC’d/fizzled. That means with the current settings, our parallel implemen-
tation is reasonable. Also, note that the parMap, parListChunk combination archives a very
high conversion rate and high speed, and this will be the combination we use for the rest of
the tests conducted on other parameters.

Here we show the ThreadScope output using this optimal combination. For more Thread-
Scope outputs, see the Appendix.

Figure 2: ThreadScope Output Using parMap, parListChunk

Note that in the first 1s we are still generating data using the sequential method, therefore
no parallelism appears in that period.

7

4.2 Different Numbers of Cores

Here is a graph demonstrating the average speed-up ratio (compared with our sequential
version) if we use different numbers of cores. This test is conducted using the best strategy
combination chosen from the experiments above, and the best result we get is around 55%
speed-up. The settings we use for this experiment is

Training data Size: 1,000,000

Test Data Size: 100

Number of Labels: 5

Number of Features: 5

Number of Folds: 10

Number of Cores: Various

We get a significant boost from using one core to using two cores, but not so significantly
afterward, probably because of increasing overheads and the fact that we have a moderate
level of parallelism.

Figure 3: Speed-up Ratio with Different Numbers of Cores

4.3 Different Data Sizes

We calculate the mean and variance over the dataset for each model we train, the time com-
plexity for this operation is O(n). With the sequential implementation, increasing the size of
the training data should result in a linear increase in runtime. Compared with the sequential
implementation, our parallel version is slightly faster. This is shown in the experiment below.
The setting we use for this experiment is

Training data Size: Various

Test Data Size: 100

Number of Labels: 5

Number of Features: 5

Number of Folds: 10

Number of Cores: 8

8

Figure 4: Runtime with Different Data Sizes

4.4 Different Numbers of Folds

In our pseudocode, the number of times the inner loop is executed is decided by the number
of folds. In theory, as the number of folds grows, runtime should increase linearly. Compared
with the sequential implementation, our parallel version is slightly faster. This is shown in
the experiment below. The setting we use for this experiment is

Training data Size: 1,000,000

Test Data Size: 100

Number of Labels: 5

Number of Features: 5

Number of Folds: Various

Number of Cores: 8

Figure 5: Runtime with Different Numbers of Folds

9

5 Future Works

Several future improvements we are considering include:

• Intermediate values.
Although our algorithm does not store a lot of intermediate values thanks to its ”naive”
nature, meaning that features are independent, we do store some intermediate values
such as the list of error rates to be averaged and the list of error rates from which we
pick the minimum. One possible way to speed up our program is to get rid of these
intermediate values.

• Larger fold values/number of features
We tried very large values for the data size (1 million), but we did not have statistics
for cases where the number of folds or the number of feature values is huge. In fact,
when we tried fold values = 1 million, the program didn’t finish even after hours. We
realize that with the computational resources we have on our laptops, running 1 million
iterations of heavy computation might not be feasible. But with greater computational
power, we’d like to see what large fold values/feature values could do to our program.

,

10

6 Appendix

6.1 Figures

ThreadScope Outputs

(a) outer: parMap; inner: parMap (b) outer: parMap; inner: parBuffer

(a) outer: parMap; inner: parListChunk (b) outer: parBuffer; inner: parMap

(a) outer: parBuffer; inner: parBuffer (b) outer: parBuffer; inner: parListChunk

11

6.2 Table

Features=m Folds=n converted overflowed dud GC’d fizzled N=8

parMap (n) 22,133,824 13,118,334 0 21,909,356 2,667,753 84.496
parMap(m) parListChunk (4) 22,130,818 11,799,704 0 23,087,003 1,673,023 72.331

parBuffer (n/2) 22,785,809 13,571,071 0 19,983,393 4,439,267 72.398
parMap (n) 22,592,144 13,559,339 5 23,422,609 1,115,330 86.809

parBuffer(m/2) parListChunk (4) 22,480,395 13,613,745 5 22,500,614 2,070,062 76.725
parBuffer (n/2) 19,752,126 15,878,618 5 20,265,291 4,162,606 74.250

Table 2: N=8 Result with Different Strategies using the parallelized version of data generator

6.3 Code

Code can be found in our GitHub Repo.
Details on how to run our code can be found in the README file.

12

https://github.com/Alex-XJK/NaiveBayes

	Introduction
	Naive Bayes Classifier
	Assumption about Our Data
	Feature Selection with Cross Validation
	Pseudocode

	Sequential Version
	Data Generation
	Feature Selection
	K-fold Cross Validation

	Parallel Version
	Data Generation
	Feature Selection
	K-fold Cross Validation

	Performance Evaluation
	Different Strategies
	Different Numbers of Cores
	Different Data Sizes
	Different Numbers of Folds

	Future Works
	Appendix
	Figures
	Table
	Code

