
1	 INTRODUCTION  
	 The Needleman-Wunsch (NW) Sequence Alignment 
algorithm is vital in bioinformatics for aligning nucleotide 
sequences. It enables the observation of genetic 
similarities, differences, and patterns, crucial for 
understanding ancestry, evolution, and diseases. However, 
due to the considerable length of nucleotide sequences, 
optimizing the algorithm is an ongoing focus in Computer 
Science [1].  
	 In our project, we've delved into current optimization 
strategies, particularly in Haskell. We've created and 
evaluated four distinct NW algorithm implementations, 
assessing their individual strengths and limitations. 

2	 GENERAL ALGORITHM 
	 This algorithm takes as input two sequences and seeks 
to maximize their alignment based on a scoring system, 
doing so through inserting gaps in either sequence or 
accepting misalignments.The algorithm makes the 
decision between either option based on the defined 
scoring schema and the scores of the neighboring cells. 
The output of the algorithm is an optimal alignment 
between the two sequences through the introduction of 
gaps.  
	 Finally, there is a ‘traceback’ operation which traces 
through the matrix and assembles the optimal alignment 
based on the scores. From the bottom right, the traceback 
looks at the scores and determines path of alignment 
based on whether there was a match, mismatch, or gap 
according to the scoring and penalty rules. This happens 
until the it reaches the top left of the matrix.  

3 	 LIMITATIONS  
Any implementation of the Needleman-Wunsch algorithm 
is bound by the face that the scores of the individual cells 
in the matrix are computed based on the maximum score 
of applying the scoring scheme with the cells directly 
atop, to the left, and top-diagonal of the current cell. 
Therefore, every implementation is limited in that when 
beginning the calculation of the score of the current cell, 
the calculations for the previous cells must be complete.  

4	 SEQUENTIAL APPROACH 
The sequential implementation simply operates within 
nested for loops, computing the scores of the cells top to 
bottom starting from the left. This works simply because 
the implementation delivers that guarantee that the 
computation of the cells that are dependencies for the 
score of the current cells already have their score.  

Here is the pseudocode for a sequential approach:

 

5	 PARALLEL APPROACH 
	 In considering the parallelization of the Needleman-
Wunsch algorithm, we encountered limitations with the 
dependencies on the previous cells in the calculation of 
the current cell's score. Additionally, because the score 
computation involves minimal processing, we couldn’t 
fragment the operation to run in parallel.  
	 So our parallel approaches were instead informed by 
how we can divide the matrix into sections. There are 
three ways to divide the matrix such that we still 
maintain the dependency of the score of the previous cell 
in the score of the current cell. 1) Defining sections by 
columns of matrix 2) Sections based on row, and 3) 
defining sections based on the anti-diagonals in the matrix 
[2]. Refer to the illustration,  

6	 HASKELL IMPLEMENTATIONS 
6.1	Developing Infrastructure  
We developed four Haskell implementations of the NW-
algorithm and its optimizations. Though we mentioned 
that the algorithm is two-part, populating the matrix and 
performing the traceback, we set our focus on the former. 
Other than that, everything stayed the same such that we 
can see the optimization of just the matrix computation.  
6.1.2 Test Cases  
We compiled three test cases from the genetic sequences 
of human and rat mitochondria with each case varying in 
length of the input strings. The first is testing with two 

Parallel Needlemam-Wunsch Algorithm for Sequence Alignment 
Final Report - COMS 4995 Parallel Functional Programming 

Phillip Le (pnl2111@columbia.edu) & Emily Lo (ej2192@barnard.edu)



strings each of length 100, 500, 1000, then 2000. Though 
current research of the optimization of the NW-algorithm 
test with input sequences of lengths much longer, since we 
are developing and testing on Macs we found that these 
were the most appropriate sizes.  
6.1.3 Scoring Scheme and Functions 
Our next steps were establish a scoring criteria that 
underpinned our score calculations in the matrix. 
Introducing a gap in either sequence incurred a 1 point 
deduction, while a sequence mismatch resulted in a 2 
point deduction. To implement this, we defined the 
Scoring data type and corresponding function:

 
6.1.4 Calculate Score Function 
The calculation of the score is consistent across all 
implementations. The input is a tuple, which represents 
the row and column of the current cell. There are ‘default 
scores’ for the 0th row and column which are the base-
case of the matrix, otherwise, the score is the max of 
different options between applying the score adjustment 
for mismatch/match and the insertion of gap into either 
sequence. Here is that implementation:  

6.1.5 Traceback Function  
We developed the following traceback function which is 
called on the resulting score-matrix and the original input 
sequences. The output is the most-aligned sequences 
according to the scores-matrix, and scoring scheme.  

6.2	NW-Algorithm Four Ways 

We implemented the NW-Algorithm four different ways 
which we go into detail and describe in the following 
sections. Each function accept as input the scoring 
scheme, the two sequences, and returns the 2D-array 
which represent the scores-matrix. 
6.2.1 Sequential Algorithm Implementation 
The base implementation for the NW-algorithm follows 
the same concept of the pseudocode provided above. We 
simply generated the list of indices between 0 and length 
of sequence 1 and sequence 2 and generated our matrix 
(2D array) using Haskell’s `map` function to calculate the 
scores of all the cells provided by our list of indices. The 
calculating the scores of the cells starts from the top-left 

cell to the bottom-right cell. Here is that code:  
6.2.2 Naive Parallel Approach, Partition Score-
Matrix by Column and Row 
	 The first two approaches to parallelize the NW-
algorithm aimed to minimize the number of generated 
sparks and the consequent drawbacks of their excessive 
utilization (GC Time). That is, create a spark per column 
or rows, and compute the scores of those columns or rows 
in parallel. We can call these, ‘Parallel Column Approach’ 
and ‘Row Column Approach’. 
	 Both implementations use `parMap` with `rpar` 
strategy to attempt the calculation of scores in entire 
columns in parallel rather than individual cells since 
regardless, the computation of cell-scores amongst these 
partitions need to be serial.  
	 The difference between the sequential implementation 
these parallel approaches is the method in which the 
score-matrix is populated. For column,  
And for row, we switch the variable we iterate through. 

6.2.3 Optimal Parallel Approach, Partition Score-
Matrix by Anti-Diagonal 
	 The anti-diagonal alignment strategy presents a unique 
advantage amongst the row by row, column by column, 
and cell by cell evaluation strategy [3]. This strategy 
divides the matrix into anti-diagonal stripes. The 
algorithm must serially compute the scores of the anti-
diagonals as a whole. However, the individual cells in the 
anti-diagonal can all be computed in parallel. This 
strategy maximizes parallelization because given a current 



cell in the anti-diagonal, all the cells necessary for the 
deriving the score of the current cell have been computed 
in the previous anti-diagonal. Refer to this illustration:  
	 First, we generate an array of arrays of tuples, each 
inner-array includes the indices of an anti-diagonal stripe 
in the matrix given its size: 

	 We first experimented with creating the score-matrix 
using `listArray` and initializing all cells to 0. Upon 
completion of generating the scores of a anti-diagonal , we 
made ‘updates’ to the matrix. However, since `listArray` 
is immutable, these updates meant we had to create an 
entirely new `listArray` which was incurred extensive 
memory usage and overhead from the copying operation. 
Therefore, we used an immutable array, IOUArray, from 
the Data.IO and initialized all values to 0, like so: 

	 We then are able to use the mapM function on each 
diagonal in the generated list of anti-diagonals and call 
the function, computeDiagonal, passing to it the 
IOUArray and the input strings. Inside we define an inline 
function which calculates the score at the index and 
writes the score in the IOUArray at that index. We are 
able to compute the score of the cell and write it 
concurrently because of the structure of the code.  
	 Specifically, we computeDiagonal serially through the 
list of all diagonals, ensuring that before computation of 
the next anti-diagonal, the calculations of the prior ones 
are complete, therefore, eliminating any race conditions 
and also enabling parallel computation of the individual 
scores of the cells.  

Since we want to make sure that we are able to 
really isolate the results of our testing to the the 
efficiency/deficiency of our score-matrix calculation 
methods, we needed to use the same traceback 
function. Therefore we had to use the `freeze` 
function in order to return a matrix of type 
IO(Array(Int, Int) Int). 

6.2.4 REVISED Optimal Parallel Approach, 
Partition Score-Matrix by Anti-Diagonal 
We noticed that our implementation never used more 
than two cores, so we went back to the drawing board. 
We thought more algorithmically (with Professor 
Edwards) and looked at each individual cell, what 
information was really needed to compute the score.  
Building upon this observation we decided to use the two 
previous diagonals as input to calculate the next diagonal. 
Specifically we stored the calculated scores from previous 
diagonals as arrays. Additionally, we also used vectors to 
represent the sequences since we were indexing frequently.  
We noticed that when used strategies like `parMap` with 
`rpar` we were incurring so much GC time that made the 
tradeoff for more parallelization one that was not fair. 
Instead, we implemented a spark by chunk strategy. This 
is the entry point of our function: 

We used foldl’ to apply the function `createDiagonal` as 
many times as there were diagonals. Create diagonal 
function takes the two first anti-diagonals, which are 
default values.  

CreateDiagonal is called with the initial parameters, it 
then calculates a new diagonal using the calcForDiagonal 
function, which is then added to the list of diagonals. We 
are adding to the list through prepending, since it is a 
cheaper operation. This process occurs iteratively, 
ensuring that by the time we compute the next anti-
diagonal, the information that it needs is available.  
Also, notice that in calcForDiagonal, we address the issue 
of over-sparking. We defined the chunkSize to 10, which 
we found optimal between all cores. This function will 
divide the computation and compute it in parallel 
between 10 chunks. This really decreased our GC Time 
and increased our overall efficiency.  
Lastly, since we wanted to use the same traceback 
function. But, the anti-diagonal function returned a 
different type. We had to provide a function to convert 
the [Array Int Int] to Array(Int, Int) Int by simply 
iterating through all the diagonals populating the matrix 



from left to right by taking the last item in the anti-
diagonal list. Then, we are able to call traceback.  

7	 RESULTS 
All the rests ran were performed on a 2022 MacBook Pro 
with 8 cores. We ran the tests over the course of 3 days 
and found the results to be consistent. The results in the 
graph below are with an two-input sequences of length 
1000. Here are the runtimes: 

The results of the base, row by row, and column by 
column approach are unsurprising in that they are quite 
similar. However, the base (sequential) implementation 
beats them by a smaller GC time contribution.  

But, is clear that the anti-diagonal approach was much 
faster. We were surprised at how flat the line was when 
increasing the number of cores. The fastest time was for 
the 2-core test. We conclude this to be because our 
chunkSize was constant between the tests and in theory 
should be changed for optimal performance based on the 
number of cores available.  

Lastly, we noticed that between all implementations 
the activity was the most balanced for the revised 
anti-diagonal approach and it most efficiently took 
advantage of runs with multi-core:  

In comparison to our first attempt at anti-diagonal 
implementation (same test, and bright green 
indicates waking up threads a.k.a a lot of sitting and 
waiting and maintaining concurrently rather than 
being concurrent): 

And finally, the column by column implementation. 
Notice, activity all on at most one core and large 
chunk of time I the middle of just GC:  

8	 Conclusion 
For our final project, we implemented five different 
implementations of the Needleman-Wunsch Sequence 
Alignment Algorithm in Haskell. We developed code 
infrastructure and instituted extensive testing on the 
results and were able to put what we learned in our 
Parallel Functional Programming course with Professor 
Stephen Edwards into practice.  

In the future, we hope to return to the implementation of 
the anti-diagonal approach with different parallel 
strategies that may lead to results in its favor.  

10 REFERENCES 

[1] T. Roughgarden. 2021. Algorithms Illuminated (Part 
3): Greedy Algorithms and Dynamic Programming. 

[2] Y. S. Lee, Y. S. Kim, R. L. Uy. “Serial and parallel 
implementation of Needleman-Wunsch algorithm, ” 2020 
International Journal of Advances in Intelligent 
Informatics. doi: 10.26555/ijain.v6i1.361. 

[3] V. Gancheva and I. Georgiev, "Multithreaded Parallel 
Sequence Alignment Based on Needleman-Wunsch 
Algorithm," 2019 IEEE 19th International Conference on 
Bioinformatics and Bioengineering (BIBE), Athens, 
Greece, 2019, pp. 165-169, doi: 10.1109/BIBE.2019.00037. 

NW-Algorithm Runtimes 

R
un

ti
m

e 
(m

s)

000

950

1900

2850

3800

No. Of Cores

1 2 3 4 5 6 7 8

315ms305ms275ms285ms270ms305ms
214ms225ms

Base aDiagonal RowxRow
ColumnxColumn aDiagonalRevised




