CheckersBot: Final Report

Kavika Krishnan - kk3526@Qcolumbia.edu
Catarina Coelho - mdc2234@barnard.edu

Overview

Background:

For our project, we decided to create a bot capable of playing checkers against a user.

We use a 8x8 board, with each player starting with 12 pieces arranged on the three rows closest to
them in the "straight checkers" starting position. The goal is to either capture all of the opponent’s
pieces or block their moves, and the game ends when a player cannot make any more moves or
is out of pieces. Pieces begin as pawns and can capture opponents by jumping over them; they
can only move diagonally forward. A pawn becomes a king when it reaches the opposite end of
the board, and kings can move diagonally backward, capturing pieces int he same way. As starter
code for our implementation, we modified existing code that allowed for two users to play against
each other (see references). We clearly designated our additions.

Initial Goal:
Our initial goal was to create a bot that played against the user. However, we found that paral-
lelizing this properly was a bit difficult given that the bot had to wait for user input.

Modified Goal:

Instead, we decided to simulate a game of checkers using two bots, a Red bot and a Black bot.
This allowed for better parallellization, as there was no wait for user input, and the game can run
start to finish independently.

Setup:

R ey
Welcome to our CheckerBot!
B e
If your valid moves are listed as [], you have tried to move a piece you cannot.
In that situation, please just use that same input when prompted for where you
want to move the piece.
B L e
Game Begins: Starts

il,

|
| 5 |
| r |
| . |
| r |

Red's Turn:
Red chose: Move (5,6) (4,5)
Heuristic Value after Red's Move: 59
R
[b-b-b-b-|
| b -b |
| = |
| = |
| = |
| 4 |
= |

| -
Black's Turn:
Black chose: Move (6,3) (5,4)
Heuristic Value after Black's Move: 942
il b b -

r

(.0 e -

How our bots operate

Each bot uses minimax with heuristics that prioritize moves based on if they allow for a capture
of an opponent piece, how far down the board the piece is after that move (closer to being a
king), and if the move allows for the piece to become a king. They maximize their own score and
minimize their opponent’s score. We played around with heuristics (i.e having each use different
weights and heuristic values), but as both are using minimax, the starting player (Red) has a clear
advantage, which is seen in the outcomes of the simulations. We also attempted to find existing
implementation of a Haskell checkers bot, but this led to the same results.

How we attempted to parallelize

Our initial goal was to parallelize a fully interactive game between bot and user. However, having
that first game coded and then evaluated on threadscope, it was clear that user input would affect
our performance metrics. As the bot waited for the user’s move, execution time was disrupted.
We concluded that our project would be improved if transformed into a bot vs bot game, that is,
fully automated. As we expected, this change allowed us to work with more predictable metrics.
This was essential for properly calculating speedup and for a controlled game development.

Our first attempt to parallelize used parMap by parallelizing for every depth. Although this
approach gave us great speedup results, our number of sparks was reaching a total of 3,000,000
created and of those 1% was converted, for a total of around 105,000 sparks converted. The ma-
jority of sparks were being garbage collected.

We shifted to a second parallelization approach. In order to avoid the unnecessary creation of
sparks, we changed our code so that parallelizing would only occur for depth >= 4. This lead to a
considerable improvement in the performance metrics of our game. Total number of sparks went
down to 6,000 and of those 85% were converted, for a total of around 5,000 sparks converted.

Threadscope Spark Stats for a 5-core session.

Timeline

| 0s 1s 2s 3s 4s 5s 6s 7s 8s
I I I I 1

[«

T|me|Heap|GC Sparkﬂatslswd(sizeslProoess infolFlaw eventsl
HEC |Total |Converted | Overflowed |Dud |GCed |Fizzled
Total 6003 5016 0 0 544 443
HECO0 974 1076 0 0 56 93
HEC1 852 1088 0 0 31 35
HEC2 962 1056 0 0 61 52
0 0
0 0

2]

HEC3 1127 933 207 90
HEC 4 2088 863 189 173

Final parallelization stats

Our code ultimately ran at 24.886 second for 1 core, and a second core brought that time down to

13.626 seconds. Our actual ratio for a second core, as seen in the graph below, is close to the ideal
ratio (around 12.443 seconds).

Speedup Ratio vs. # of Threads

* Actual Batio = Ideal Ratio

=
E +
L, ~ i i
= Bl
= 2 .
2
[
[=W
¥
]

i = 3 4 §5 6 7 B g9 10 11 12

Threads

Threads | Actual Runtime (s)
1 24.886

2 13.626

3 11.55

4 10.542
5
6
7
8
9

9.286
9.706
9.185
8.844
9.302
10 9.2012
11 8.849
12 10.65

Code (Main.hs):

Note that sections taken from the aforementioned source code are clearly designated.

Control.Parallel.Strategies
Data.List (maximumBy)

CPiece = Red | RedKing | Black | BlackKing (Eqg, Show)
CBoard = [[Maybe CPiecell
CMove = Move (Int,Int) (Int, Int) Take (Int,Int) (Int, Int) (Eq, Show)

pieceWeight CPiece Int
pieceWeight Red 1
pieceWeight RedKing 10
pieceWeight Black = 1
pieceWeight BlackKing 10

positionWeight (Int, Int) Int
positionWeight (_, y) y

getHeuristicValueRed CBoard Int
getHeuristicValueRed board = evaluateBoardRed board

evaluateBoardRed CBoard Int
evaluateBoardRed board redScore - blackScore + captureBonus

redScore = sum [pieceWeight p + positionWeight (x, y)| x [1..8],

y [1..8], Just p [getPiece board (x, y)], isRedPiece (Just p)]

blackScore = sum [pieceWeight p * positionWeight (x, y) X [1..8],

y [1..8], Just p [getPiece board (x, y)], isBlackPiece (Just p)]

captureBonus sum [captureValue | possibleMove allPossibleMoves board, isCaptureMove possibleMove]

captureValue = 1000
isCaptureMove CMove Bool
isCaptureMove (Take _ _) True

isCaptureMove _ = False

allPossibleMoves CBoard [CMove]
allPossibleMoves b = concatMap (\pos listMoves b pos) allPositions

allPositions [(x, y) X [1..8], ¥y [1..8]

getHeuristicValueBlack CBoard Int
getHeuristicValueBlack board = evaluateBoardBlack board

evaluateBoardBlack CBoard Int
evaluateBoardBlack board blackScore redScore + captureBonus

redScore = sum [pieceWeight p positionWeight (x, y)
X [1..8], ¥ [1..8], Just p [getPiece board (x, y)], isRedPiece (Just p)]
blackScore = sum [pieceWeight p positionWeight (x, y)
X [1..8], ¥y [1..8], Just p [getPiece board (x, y)], isBlackPiece (Just p)]
captureBonus sum [captureValue | possibleMove allPossibleMoves board, isCaptureMove possibleMovel]

captureValue = 1000
isCaptureMove CMove Bool

isCaptureMove (Take _ _) True
isCaptureMove _ = False

allPossibleMoves CBoard [CMovel
allPossibleMoves b = concatMap (\pos listMoves b pos) allPositions
allPositions [(x, y) X [1..8], ¥ [1..8]

makeEmptyBoard Int Int CBoard
makeEmptyBoard w h [[Nothing

makeStandardBoard CBoard

makeStandardBoard = board
board = foldl (\x y setPiece x (Just Black) y) w_board b_positions
w_board = foldl (\x y setPiece x (Just Red) y) initial w_positions
b_positions [(x,y) X [1..8], y [1,2,3], (x 2)/=(y
w_positions [(x,y) X [1..8]1, y [6,7,8], (x 2)/=(y
initial = makeEmptyBoard 8 8

move CBoard CMove Maybe CBoard

move b m@(Move (x1,yl) (x2,y2)) any (=-m) (listMoves b (x1,yl))
Just (movePiece b m) Nothing

move b m@(Take (x1,yl) (x2,y2)) any (==m) (listMoves b (x1,yl))
Just (movePiece b m) Nothing

movePiece CBoard CMove CBoard
movePiece b (Move (x1,yl) (x2,y2)) = setPiece b' p (x2,y2)
p = updatePiece b (x1, yl1) (x2,y2)
b' setPiece b (Nothing) (x1,y1)
movePiece b (Take (x1,yl) (x2,y2)) setPiece b'' p (x2,y2)
p = updatePiece b (x1, y1) (x2, y2)
b'" setPiece b' (Nothing) ((quot (x1+x2) 2), (quot (yl+y2) 2))
b' setPiece b (Nothing) (x1,y1)

listMoves CBoard (Int,Int) [CMove]
listMoves b (x, y) getPiece b (x,y)
Just Black [Move(x,y) (x2,y2)|(x2,y2)<-allMoves b (x,y), y2=y]
[Take(x,y) (x2,y2) | (x2, y2)<-allTakes b (Just Black) (x, y)]
Just Red [Move(x,y) (x2,y2)]|(x2,y2)<-allMoves b (x,y), y2<y]
[Take(x,y) (x2,y2) | (x2, y2)<-allTakes b (Just Red) (x, y)]
Just BlackKing [Move(x,y) (x2,y2) | (x2,y2)<-allMoves b (x,y)]
[Take(x,y)(x2,y2) | (x2, y2)<-allTakes b (Just BlackKing) (x, y)I
Just RedKing [Move(x,y) (x2,y2) | (x2,y2)<-allMoves b (x,y)]
[Take(x,y) (x2,y2) | (x2, y2)<-allTakes b (Just RedKing) (x, y)I
Nothing [1

getPiece CBoard (Int,Int) Maybe CPiece
getPiece board (x,y) (getElem board y)
Nothing Nothing
Just 1s (getElem ls x)
Nothing Nothing
Just x X

updatePiece CBoard (Int,Int) (Int,Int) Maybe CPiece
updatePiece b (x1,yl) (x2,y2) getPiece b (x1, yl)
Just Black y2 height b Just BlackKing Just Black
Just Red y2 Just RedKing Just Red
a a

setPiece CBoard Maybe CPiece (Int,Int) CBoard
setPiece [1 _ (_,_) []
setPiece ((x:1):1s) p (1,1) (p: 1) 1s
setPiece ((x:1):1s) p (w,1) (setPiece (l:1s) p ((w-1),1))
(12:1s2) (x:12) : 1s2
[] [[x]]
setPiece (1:1s) p (w,h) (setPiece 1s p (w,(h-1)))

CBoard Int
[’}
width (h:t) = length h

height CBoard Int
height = length

getElem [a] Int Maybe a
getElem [] _ = Nothing

getElem (h:_) 1 = Just h

getElem (h:t) n = getElem t (n-1)

allMoves CBoard (Int,Int) [(Int,Int)]

allMoves b (x,y) [p/ p<-onBoard, (getPiece b p) Nothingl
onBoard [(x,y) (x,y)<-spaces, x<width b, y<height b, x-0, y=0]
spaces [(x+1,y+1), (x-1,y+1), (x+1,y-1),(x-1,y-1)]

allTakes CBoard Maybe CPiece (Int,Int) [(Int,Int)]
allTakes b Nothing _ = [I]
allTakes b (Just Black) (x,y) takes
takes [(x2,y2) | (x2,y2)<-free,
getPiece b (quot (x2+x) 2, quot (y2+y) 2) Just Red
getPiece b (quot (x2+x) 2, quot (y2+y) 2) Just RedKing]
free [s | s onBoard, (getPiece b s) Nothing]
onBoard [(x,y) (x,y)<-spaces, x<width b, y<height b, x-0, y=0]
spaces [(x+2,y+2), (x-2,y+2)]
allTakes b (Just BlackkKing) (x,y) = takes
takes [(x2,y2) | (x2,y2)<-free,
getPiece b (quot (x2+x) 2, quot (y2+y) 2) Just Red
getPiece b (quot (x2+x) 2, quot (y2+y) 2) Just RedKing]
free [s | s onBoard, (getPiece b s) Nothing]
onBoard [(x,y) (x,y)<-spaces, x<width b, y<height b, x-0, y=0]
spaces [(x+2,y+2), (x-2,y+2), (x+2,y-2), (x-2,y-2)]
allTakes b (Just Red) (x,y) takes
takes [(x2,y2) | (x2,y2)<-free,
getPiece b (quot (x2+x) 2, quot (y2+y) 2) Just Black
getPiece b (quot (x2+x) 2, quot (y2+y) 2) Just BlackKing]
free [s | s onBoard, (getPiece b s) Nothing]
onBoard [(x,y) (X,y)<-spaces, x<width b, y<height b, x-0, y=0]
spaces [(x+2,y-2), (x-2,y-2)]
allTakes b (Just RedKing) (x,y) = takes
takes [(x2,y2) | (x2,y2)<-free,
getPiece b (quot (x2+x) 2, quot (y2+y) 2) Just Black
getPiece b (quot (x2+x) 2, quot (y2+y) 2) Just BlackKing]
free [s | s onBoard, (getPiece b s) Nothing]
onBoard [(x,y) (x,y)<-spaces, x<width b, y<height b, x-0, y=0]
spaces [(x+2,y+2), (x-2,y+2), (x+2,y-2), (x-2,y-2)]

printBoard CBoard I0 ()
printBoard b = putStr (showBoard b)

showBoard CBoard String
showBoard board = indexedBoard

indexedBoard = unlines & zipWith (\i row pad i o
concatMap showPieceWithSpace row "|") [1..] board

pad Int String

pad n
n<1l1@="" show n
otherwise = show n

showPieceWithSpace Maybe CPiece String
showPieceWithSpace piece = showPiece piece "

showPiece Maybe CPiece String

showPiece (Just Red) ot

showPiece (Just RedKing)

showPiece (Just Black) = '

showPiece (Just BlackKing) "B

showPiece (Nothing) = "-"

gameStart I0 ()

gameStart
putStrin "4+ttt R
putStrLn "Welcome to our CheckerBot!"™
putStrin "4+ttt R
putStrLn "If your valid moves are listed as [], you have tried to move a piece you cannot."
putStrLn "In that situation, please just use that same input when prompted for where you"
putStrLn "want to move the piece."
putStrin "4+ttt R
putStrLn "Game Begins: Red Starts"
printBoard makeStandardBoard

getAllBlackPieces CBoard [(Int, Int)]
getAllBlackPieces board [(x, y) X [1 I, v [1..8], isBlackPiece (getPiece board (x, y))]

getAllRedPieces CBoard [(Int, Int)]
getAllRedPieces board [(x, y) X [1 [1..8]1, isRedPiece (getPiece board (x, y))]

isBlackPiece Maybe CPiece Bool
isBlackPiece (Just Black) True
isBlackPiece (Just BlackKing) True
isBlackPiece False

isRedPiece Maybe CPiece Bool
isRedPiece (Just Red) True
isRedPiece (Just RedKing) True
isRedPiece _ = False

playGame CBoard I0 ()
playGame board
putStrLn "Red's Turn:"
redMovesAvailable areMovesAvailable board Red
not redMovesAvailable
putStrLn "Game Over! Red has no moves left. Black wins!" return ()

redBoard performRedMove board
printBoard redBoard
blackMovesAvailable areMovesAvailable redBoard Black
not blackMovesAvailable
putStrLn "Game Over! Black has no moves left. Red wins!" return ()

putStrLn "Black's Turn:"

blackBoard performBlackMove redBoard
printBoard blackBoard

playGame blackBoard

areMovesAvailable CBoard CPiece I0 Bool

areMovesAvailable board player
return . not . null ¢ concatMap (\pos listMoves board pos) positions

positions player
Red getAl1RedPieces board
Black getAllBlackPieces board

[1

minimaxRed CBoard Int CMove
minimaxRed board depth = bestMove
(_, bestMove) maximizeRed depth board

maximizeRed Int CBoard (Int, CMove)
maximizeRed @ board (evaluateBoardRed board, Move (@, @) (@, 2))
maximizeRed depth board
null redMoves (endGameScore board, Move (@, @) (@, @))
depth 4 = maximumBy (\(scorel, _) (score2, _) compare scorel score2)
parMap rpar (\move (minimizeRed (depth - 1) (movePiece board move), move)) redMoves
otherwise = maximumBy (\(scorel, _) (score2, _) compare scorel score2)

map (\move (minimizeRed (depth - 1) (movePiece board move), move)) redMoves
redMoves = concatMap (\(x, y) listMoves board (x, y)) & getAllRedPieces board

minimizeRed Int CBoard Int
minimizeRed @ board - evaluateBoardRed board
minimizeRed depth board

null blackMoves = endGameScore board

depth 4 = minimum $ parMap rpar (\move fst ¢ maximizeRed (depth - 1) (movePiece board move)) blackMoves

otherwise = minimum $ map (\move fst ¢ maximizeRed (depth - 1) (movePiece board move)) blackMoves

blackMoves = concatMap (\(x, y) listMoves board (x, y)) getAllBlackPieces board

minimaxBlack CBoard Int CMove
minimaxBlack board depth = bestMove
(_, bestMove) maximizeBlack depth board

maximizeBlack Int CBoard (Int, CMove)
maximizeBlack @ board (evaluateBoardBlack board, Move (@, @) (@, 2))
maximizeBlack depth board
null blackMoves (endGameScore board, Move (@, @) (@, 0))
depth 4 maximumBy (\(scorel, _) (score2, _) compare scorel score2)
parMap rpar (\move (minimizeBlack (depth - 1) (movePiece board move), move)) blackMoves
otherwise = maximumBy (\(scorel, (score2, _) compare scorel score2)
map (\move (minimizeBlack (depth - 1) (movePiece board move), move)) blackMoves

blackMoves = concatMap (\(x, y) listMoves board (x, y)) getAllBlackPieces board

10

minimizeBlack Int CBoard Int
minimizeBlack @ board - evaluateBoardBlack board
minimizeBlack depth board

depth 4 = minimum $ parMap rpar (\move fst ¢ maximizeBlack (depth 1) (movePiece board move)) redMoves

otherwise = minimum $ map (\move fst ¢ maximizeBlack (depth - 1) (movePiece board move)) redMoves

redMoves = concatMap (\(x, y) listMoves board (x, y)) % getAllRedPieces board

endGameScore CBoard Int

endGameScore board
isGameOver board null (getAllRedPieces board) 10000
isGameOver board null (getAllBlackPieces board) 10000
otherwise = evaluateBoardRed board

performRedMove CBoard I0 CBoard
performRedMove board
redMove = minimaxRed board 5
putStrLn $ "Red chose: " show redMove
newBoard = movePiece board redMove
putStrLn ¢ "Heuristic Value after Red's Move: " show (getHeuristicValueRed newBoard)
return newBoard

performBlackMove CBoard I0 CBoard
performBlackMove board
blackMove = minimaxBlack board 5
putStrLn $ "Black chose: " show blackMove
newBoard - movePiece board blackMove
putStrLn $ "Heuristic Value after Black's Move: " show (getHeuristicValueBlack newBoard)
return newBoard

isGameOver CBoard Bool
isGameOver board = null (getAllRedPieces board) null (getAllBlackPieces board)

main I0()

main
gameStart
playGame makeStandardBoard
putStrLn "“End"

References
Checkers Board diagram: https://en.wikipedia.org/wiki/File:Draughts.svg

Source code: https://github.com/TAmSam42/CS312-Checkers
Consulted with: Sanjay Rajasekharan

11

