
CheckersBot: Final Report

Kavika Krishnan - kk3526@columbia.edu
Catarina Coelho - mdc2234@barnard.edu

Overview
Background:
For our project, we decided to create a bot capable of playing checkers against a user.
We use a 8x8 board, with each player starting with 12 pieces arranged on the three rows closest to
them in the "straight checkers" starting position. The goal is to either capture all of the opponent’s
pieces or block their moves, and the game ends when a player cannot make any more moves or
is out of pieces. Pieces begin as pawns and can capture opponents by jumping over them; they
can only move diagonally forward. A pawn becomes a king when it reaches the opposite end of
the board, and kings can move diagonally backward, capturing pieces int he same way. As starter
code for our implementation, we modified existing code that allowed for two users to play against
each other (see references). We clearly designated our additions.

Initial Goal:
Our initial goal was to create a bot that played against the user. However, we found that paral-
lelizing this properly was a bit difficult given that the bot had to wait for user input.

Modified Goal:
Instead, we decided to simulate a game of checkers using two bots, a Red bot and a Black bot.
This allowed for better parallellization, as there was no wait for user input, and the game can run
start to finish independently.

1

Setup:

How our bots operate
Each bot uses minimax with heuristics that prioritize moves based on if they allow for a capture
of an opponent piece, how far down the board the piece is after that move (closer to being a
king), and if the move allows for the piece to become a king. They maximize their own score and
minimize their opponent’s score. We played around with heuristics (i.e having each use different
weights and heuristic values), but as both are using minimax, the starting player (Red) has a clear
advantage, which is seen in the outcomes of the simulations. We also attempted to find existing
implementation of a Haskell checkers bot, but this led to the same results.

How we attempted to parallelize
Our initial goal was to parallelize a fully interactive game between bot and user. However, having
that first game coded and then evaluated on threadscope, it was clear that user input would affect
our performance metrics. As the bot waited for the user’s move, execution time was disrupted.
We concluded that our project would be improved if transformed into a bot vs bot game, that is,
fully automated. As we expected, this change allowed us to work with more predictable metrics.
This was essential for properly calculating speedup and for a controlled game development.

Our first attempt to parallelize used parMap by parallelizing for every depth. Although this
approach gave us great speedup results, our number of sparks was reaching a total of 3,000,000
created and of those 1% was converted, for a total of around 105,000 sparks converted. The ma-
jority of sparks were being garbage collected.

We shifted to a second parallelization approach. In order to avoid the unnecessary creation of
sparks, we changed our code so that parallelizing would only occur for depth >= 4. This lead to a
considerable improvement in the performance metrics of our game. Total number of sparks went
down to 6,000 and of those 85% were converted, for a total of around 5,000 sparks converted.

2

Threadscope Spark Stats for a 5-core session.

Final parallelization stats
Our code ultimately ran at 24.886 second for 1 core, and a second core brought that time down to
13.626 seconds. Our actual ratio for a second core, as seen in the graph below, is close to the ideal
ratio (around 12.443 seconds).

3

Threads Actual Runtime (s)
1 24.886
2 13.626
3 11.55
4 10.542
5 9.286
6 9.706
7 9.185
8 8.844
9 9.302
10 9.2012
11 8.849
12 10.65

Code (Main.hs):
Note that sections taken from the aforementioned source code are clearly designated.

4

5

6

7

8

9

10

References
Checkers Board diagram: https://en.wikipedia.org/wiki/File:Draughts.svg
Source code: https://github.com/IAmSam42/CS312-Checkers
Consulted with: Sanjay Rajasekharan

11

