
Recursion and Higher-Order Functions

Stephen A. Edwards

Columbia University

Fall 2023

Recursion in Haskell

Pattern matching works nicely:

recfun <base case> = <base value>
recfun <part> <rest> = <some work> <part> <combined with> recfun <rest>

maximum' :: Ord a => [a] -> a
maximum' [] = error "empty list"
maximum' [x] = x −− base case
maximum' (x:xs)

 | x > maxTail = x −− found a new maximum
 | otherwise = maxTail
 where maxTail = maximum' xs −− recurse

The list elements need to be ordered so we can perform > on them

maximum is part of the standard prelude; you do not need to write this

Maximum

Far better: build the solution out of helpful pieces, even if they are small. It is
efficient; GHC aggressively inlines code to avoid function call overhead

max' :: Ord a => a -> a -> a
max' a b

 | a > b = a
 | otherwise = b

maximum' :: Ord a => [a] -> a
maximum' [] = error "empty list"
maximum' [x] = x
maximum' (x:xs) = x ̀ max'` maximum' xs

This is still twice as complicated as it needs to be; we’ll revisit this later

Replicate and Take

replicate' :: (Num n, Ord n) => n -> a -> [a]
replicate' n x

 | n <= 0 = []
 | otherwise = x : replicate' (n-1) x

The Num typeclass (-) does not include Ord (for <=), so Ord is needed

Used a guard since we’re testing a condition n <= 0 rather than a constant.

take' :: (Num n, Ord n) => n -> [a] -> [a]
take' n _ | n <= 0 = [] −− base case
take' _ [] = [] −− base case
take' n (x:xs) = x : take' (n-1) xs −− recurse

Replicate and Take Revisited

The Standard Prelude implementation uses infinite lists

take' :: (Num n, Ord n) => n -> [a] -> [a]
take' n _ | n <= 0 = []
take' _ [] = []
take' n (x:xs) = x : take' (n-1) xs

repeat' :: a -> [a]
repeat' x = xs where xs = x : xs −− Infinite list

replicate' :: (Num n, Ord n) => n -> a -> [a]
replicate' n x = take' n (repeat' x)

Zip: Combine Two Lists Into a List of Pairs

zip' :: [a] -> [b] -> [(a,b)]
zip' [] _ = []
zip' _ [] = []
zip' (x:xs) (y:ys) = (x,y) : zip' xs ys

Works nicely with lists of mismatched lengths, including infinite:

*Main> zip' [0..3] [1..5] :: [(Int, Int)]
[(0,1),(1,2),(2,3),(3,4)]

*Main> zip' "abc" ([1..] :: [Int])
[('a',1),('b',2),('c',3)]

Quicksort in Haskell

Ï Pick and remove a pivot
Ï Partition into two lists: smaller or equal to and larger than pivot
Ï Recurse on both lists
Ï Concatenate smaller, pivot, then larger

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) = quicksort [x | x <- xs, x <= p] ++

 [p] ++
 quicksort [x | x <- xs, x > p]

Efficient enough: ++ associates to the right so a ++ b ++ c is (a ++ (b ++ c))

Using Recursion in Haskell

Haskell does not have classical for or do loops

Recursion can implement either of these plus much
more. Tail-recursion is just as efficient as such loops

Most of the time, however, your loop or recursive
function fits a well-known pattern that is already in a
Standard Prelude function that you should use instead

A key advantage of functional languages, including Haskell, is that you can
build new control constructs

Partially Applied Functions
The (+) syntax also permits a single argument to be applied on either side
and returns a function that takes the “missing” argument:

Prelude> (++ ", hello") "Stephen"
"Stephen, hello"
Prelude> ("Hello, " ++) "Stephen"
"Hello, Stephen"
Prelude> (<= (5::Int)) 10
False
Prelude> (<= (5::Int)) 5
True
Prelude> (<= (5::Int)) 4
True

- is weird because (-4) means negative four. Use subtract:

Prelude> (subtract 4) 10
6

Higher-Order Functions

Passing functions as arguments is routine yet powerful

Prelude> :{
Prelude| applyTwice :: (a -> a) -> a -> a
Prelude| applyTwice f x = f (f x)
Prelude| :}

Prelude> applyTwice (+5) 1
11
Prelude> applyTwice (++ " is stupid") "Stephen"
"Stephen is stupid is stupid"

“applyTwice takes a function and return a function that takes a value and
applies the function to the value twice”

Flip

Standard Prelude function that reverses the order of the first arguments

flip' :: (a -> b -> c) -> (b -> a -> c)
flip' f = g where g x y = f y x

But since the “function type” operator -> associates right-to-left,

flip' :: (a -> b -> c) -> b -> a -> c
flip' f x y = f y x

Prelude> zip [1..5] "Hello"
[(1,'H'),(2,'e'),(3,'l'),(4,'l'),(5,'o')]
Prelude> flip zip [1..5] "Hello"
[('H',1),('e',2),('l',3),('l',4),('o',5)]
Prelude> zipWith (flip div) [2,2..] [10,8..2]
[5,4,3,2,1]

Map: A Foundation of Functional Programming

A Standard Prelude function. Two equivalent ways to code it:

map' :: (a -> b) -> [a] -> [b]
map' _ [] = []
map' f (x:xs) = f x : map' f xs

map'' :: (a -> b) -> [a] -> [b]
map'' f xs = [f x | x <- xs]

*Main> map (+5) ([1..5] :: [Int])
[6,7,8,9,10]

*Main> map (++ "!") ["BIFF","BAM","POW"]
["BIFF!","BAM!","POW!"]

You’ve written many loops that fit map in imperative languages

zipWith

Another Standard Prelude function zipWith takes a function and two lists and
applies the function to the list elements, like a combination of zip and map:

zipWith' :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith' _ [] _ = []
zipWith' _ _ [] = []
zipWith' f (x:xs) (y:ys) = f x y : zipWith' f xs ys

Prelude> zipWith (+) [1..5] [10,20..] :: [Int]
[11,22,33,44,55]

The Standard Prelude implements zip with zipWith

zip' :: [a] -> [b] -> [(a,b)]
zip' = zipWith (,) −− the "make-a-pair" operator

Filter: Select each element of a list that satisfies a predicate

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs) | p x = x : filter p xs

 | otherwise = filter p xs

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

Prelude> filter (>= 3) [1..10] :: [Int]
[3,4,5,6,7,8,9,10]

What’s the largest number under 100,000 that’s divisible by 3,829?

Prelude> x ̀ divides` y = y ̀ mod` x == 0
Prelude> head (filter (3829 ̀ divides`) [100000,99999..])
99554

Quicksort Revisited

Using filter instead of list comprehensions:

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) = quicksort (filter (<= p) xs) ++ [p] ++

 quicksort (filter (> p) xs)

Similar performance; choose the one that’s easier to understand

takeWhile: Select the first elements that satisfy a predicate
Same type signature as filter, but stop taking elements from the list once the
predicate is false. Also part of the Standard Prelude

takeWhile' :: (a -> Bool) -> [a] -> [a]
takeWhile' _ [] = []
takeWhile' p (x:xs) | p x = x : takeWhile' p xs

 | otherwise = []

Prelude> takeWhile (/= ' ') "Word splitter function"
"Word"

What’s the sum of all odd squares under 10,000?

Prelude> sum (takeWhile (<10000) (filter odd (map (^2) [1..])))
166650
Prelude> sum (takeWhile (<10000) [n^2 | n <- [1..], odd (n^2)])
166650

Twin Primes

Twin Primes differ by two, e.g., 3 and 5, 11 and 13, etc.

Prelude> primes = f [2..] where
Prelude| f (p:xs) = p : f [x | x <- xs, x ̀ mod` p /= 0]

Prelude> twinPrimes = filter twin (zip primes (tail primes) where
Prelude| twin (a,b) = a+2 == b

Prelude> take 7 twinPrimes
[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61)]

Prelude> length twinPrimes

(Left as an exercise for the reader)

Collatz sequences

For starting numbers between 1 and 100, how many Collatz sequences are
longer than 15?

collatz :: Int -> [Int]
collatz 1 = [1]
collatz n | even n = n : collatz (n ̀ div` 2)

 | otherwise = n : collatz (n * 3 + 1)

numLongChains :: Int
numLongChains = length (filter isLong (map collatz [1..100]))

 where isLong xs = length xs > 15

*Main> collatz 30
[30,15,46,23,70,35,106,53,160,80,40,20,10,5,16,8,4,2,1]

*Main> numLongChains
66

Lambda Expressions

A lambda expression is an unnamed function. \ is a λ missing a leg:

\ <args> -> <expr>

Things like (+ 5) and max 5 are also unnamed functions,
but the lambda syntax is more powerful

Without a Lambda expression:

numLongChains = length (filter isLong (map collatz [1..100]))
 where isLong xs = length xs > 15

Using Lambda:

numLongChains = length (filter (\xs -> length xs > 15)
 (map collatz [1..100]))

Lambda Expressions
Multiple and pattern arguments:

Prelude> zipWith (\a b -> a * 100 + b) [5,4..1] [1..5]
[501,402,303,204,105]
Prelude> map (\(a,b) -> a + b) [(1,2),(3,5),(6,3),(2,6),(2,5)]
[3,8,9,8,7]

Function definitions are just convenient shorthand for Lambda expressions:

addThree :: Num a => a->a->a->a
addThree x y z = x + y + z

addThree :: Num a => a->a->a->a
addThree = \x -> \y -> \z ->

 x + y + z

Some Lambdas are unncessary:

Prelude> zipWith (\x y -> x + y) [1..5] [100,200..500]
[101,202,303,404,505]
Prelude> zipWith (+) [1..5] [100,200..500]
[101,202,303,404,505]

Fold: Another Foundational Function
Apply a function to each element to accumulate a result:

foldl f z [a1,a2, . . . ,an]= f (· · ·(f (f z a1) a2) · · ·) an

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

Prelude> 0 + 1 + 2 + 3 + 4 + 5
15
Prelude> foldl (\acc x -> acc + x) 0 [1..5]
15
Prelude> foldl (+) 0 [1..5]
15

sum :: Num a -> [a] -> a
sum = foldl (+) 0 −− Standard Prelude definition

Foldl† in action

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl f 100 [1..3] where f = \z x -> z + x −− a.k.a. (+)
 = foldl f 100 [1,2,3] −− Evaluate foldl: apply f to z and x
 = foldl f (f 100 1) [2,3] −− Evaluate f: add z and x
 = foldl f 101 [2,3]
 = foldl f (f 101 2) [3]
 = foldl f 103 [3]
 = foldl f (f 103 3) []
 = foldl f 106 [] −− Base case: return z
 = 106

† Technically, this is foldl’ in action; this gives the same result.

foldl1: foldl starting from the first element

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs −− Start with the list’s head
foldl1 _ [] = error "Prelude.foldl1: empty list"

foldl vs. foldr

foldl from the left; foldr from the right. Function’s arguments reversed

foldl f z [a1,a2, . . . ,an] = f (· · ·(f (f z a1) a2) · · ·) an

foldr f z [a1,a2, . . . ,an] = f a1 (f a2 (· · ·(f an z)) · · ·)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs −− f = \acc x -> ...

foldr :: (b -> a -> a) -> a -> [b] -> a
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs) −− f = \x acc -> ...

Folds Are Extremely Powerful: They’re Everywhere
concat :: [[a]] -> [a]
concat xss = foldr (++) [] xss

reverse :: [a] -> [a]
reverse = foldl (\a x -> x : a) [] −− Lambda expression version
reverse = foldl (flip (:)) [] −− Prelude definition

and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False

sum, product :: (Num a) => [a] -> a
sum = foldl (+) 0
product = foldl (*) 1

maximum, minimum :: Ord a => [a] -> a
maximum [] = error "Prelude.maximum: empty list"
maximum xs = foldl1 max xs

minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldl1 min xs

Folds Subsume map and filter

map' :: (a -> b) -> [a] -> [b]
map' f xs = foldr (\x acc -> f x : acc) [] xs

A left fold also works, but is less efficient because of ++:

map' f xs = foldl (\acc x -> acc ++ [f x]) [] xs

Filter is like a conditional map

filter' :: (a -> Bool) -> [a] -> [a]
filter' p = foldr (\x acc -> if p x then x : acc else acc) []

The Standard Prelude uses the recursive definitions of map and filter

Foldr Evaluates Left-to-Right Because Haskell is Lazy
Haskell’s undefined throws an exception only when it is evaluated

undefined :: a
undefined = error "Prelude.undefined"

foldr f z [a1,a2, . . . ,an]= f a1 (f a2(· · ·(f an z)) · · ·)

Prelude> quitZero x acc = if x == 0 then 0 else x + acc
Prelude> foldr quitZero 0 [3,2,1,0]
6
Prelude> foldr quitZero 0 [3,2,1,0,100]
6
Prelude> foldr quitZero 0 [3,2,1,undefined]

*** Exception: Prelude.undefined
Prelude> foldr quitZero 0 [3,2,1,0,undefined]
6

&& and || are Short-Circuit Operators
(&&), (||) :: Bool -> Bool -> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x

and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False

Prelude> or [True, True, undefined]
True
Prelude> and [True, True, undefined]

*** Exception: Prelude.undefined
Prelude> and [True, False, undefined]
False
Prelude> or [False, True, undefined]
True
Prelude> or [False, False, undefined]

*** Exception: Prelude.undefined

Foldl Evaluates Left-to-Right Because of Laziness
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z −− (base)
foldl f z (x:xs) = foldl f (f z x) xs −− (recurse)

foldl f 100 [1..3]
 where f = \z x -> z + x −− (f)
 = foldl f 100 [1,2,3] −− expand range
 = foldl f (f 100 1) [2,3] −− (recurse)
 = foldl f (f (f 100 1) 2) [3] −− (recurse)
 = foldl f (f (f (f 100 1) 2) 3) [] −− (recurse)
 = f (f (f 100 1) 2) 3 −− (base)
 = (f (f 100 1) 2) + 3 −− (f)
 = (f 100 1) + 2 + 3 −− (f)
 = 100 + 1 + 2 + 3 −− (+)
 = 101 + 2 + 3 −− (+)
 = 103 + 3 −− (+)
 = 106 −− (+)

† Technically, this is foldl’ in action; this is still functionally correct.

Scanl and Scanr: Fold Remembering Accumulator Values

scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f q xs = q : (case xs of [] -> []

 x:xs -> scanl f (f q x) xs)

scanr :: (b -> a -> a) -> a -> [b] -> [a]
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs where qs@(q:_) = scanr f q0 xs

Prelude> foldl (+) 0 [1..5]
15
Prelude> scanl (+) 0 [1..5]
[0,1,3,6,10,15]
Prelude> scanr (+) 0 [1..5]
[15,14,12,9,5,0]

Scanl and takeWhile Can Mimic a Do Loop

How many square roots added together just exceed 1000?

Prelude> length (takeWhile (<1000) (scanl1 (+) (map sqrt [1..])))
130
Prelude> sum (map sqrt [1..130])
993.6486803921487
Prelude> sum (map sqrt [1..131])
1005.0942035344083

Avoiding LISP† with $
Many functions put their complex-to-compute arguments at the end;
applying these in sequence give expressions of the form f ... (g (h ...))

Use $ to eliminate the ending parentheses. It is right-associative at the lowest
precedence so f $ g $ h x is f (g (h x))

Normal argument application (juxtaposition) is at the highest precedence

infixr 0 $ −− Right-associative, lowest precedence
($) :: (a -> b) -> a -> b
f $ x = f x

Prelude> length (takeWhile (<1000) (scanl1 (+) (map sqrt [1..])))
130
Prelude> length $ takeWhile (<1000) $ scanl1 (+) $ map sqrt [1..]
130

† Lots of Irritating, Silly Parentheses

Applying an Argument as a Function

$ is the function application operator: it applies the function on its left to the
argument on its right

Juxataposition does the same thing without an explicit operator

Prelude> map ($ 3) [(4+), (10*), (^2), sqrt]
[7.0,30.0,9.0,1.7320508075688772]

($ 3) is the “apply 3 as an argument to the function” function, equivalent to
\f -> f 3.

Function Composition

In math notation, (f ◦g)(x)= f(g(x)); in Haskell,

infixr 9 . −− Right-associative, highest precedence
(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \ x -> f (g x)

So (f . g . h) x is (f (g (h x)))

Prelude> map (\x -> negate (abs x)) [5,-3,-6,7,-3,2,-19,24]
[-5,-3,-6,-7,-3,-2,-19,-24]
Prelude> map (negate . abs) [5,-3,-6,7,-3,2,-19,24]
[-5,-3,-6,-7,-3,-2,-19,-24]

Best used when constructing functions to pass as an argument

