Design Document: Autotune

By Cam Coleman (cc4535) , Adam Banees (ab4972) , and Khaela Harrod (klh2173)



Table of Contents

Introduction
System Block Diagram

12C

Record.c

USB Keyboard

Audio Serialization— Adam writes
Algorithms
Resource Budgets
Hardware and Software Interface
Milestones

w
1

D
N~NoudhdsADADNEDAON



Introduction

In this project, we will create a program that utilizes a board to correct the pitch of
any given sound. We will use hardware devices such as a microphone, speaker
and keyboard to implement our design and test our program.

The idea is to get audio data from a microphone through the audio CODEC and
store it into the FPGA memory. We will set up a USB keyboard function to say
when to start recording. Once we have the recording, the audio data is then read
through the device drivers via Avalon bus and altered through our autotune
algorithm. Once altered, the audio file is then sent back through the bus and
written into the FPGA memory and output the resulting file via SCP.



System Block Diagram

L USB Keyboard J

i HPS
.
‘ USB Drivers }
Keyboard
Decoding )

{

. ) .
Key is pressed for recording
|

FPGA

—

v

Record.c

—

-
Autotune Wj Memory

4

12c Audio Input

[

‘ Audio CODEC l

A

—

DEl:SoC

» Output File

Mic In

——Audio Signal———p»

——Control Signal——p

Figure 1: Block Diagram for Project Design

12C

I2C has become a popular serial communication standard used in
embedded systems to link microcontrollers and peripherals. The data line
(SDA) and the clock line (SCL) are the two lines that 12C employs for
communication. Communication takes place when one device pulls the
data line down while the clock line is up on these high-voltage
connections. The data transfer between the devices is then synchronized
by switching the clock line. 12C permits the use of numerous devices, each



with a distinct address, on a single bus. This makes it simple to interface
with many peripherals, including sensors, EEPROMs, and LCD screens.
All'in all, 12C is a simple and dependable communication protocol that is
frequently used in embedded systems for its ease of implementation and
versatility.

Record.c

Signal telling memory what you want

USB Keyboard

A USB keyboard is a computer peripheral that connects to a computer via the
USB interface. It is a common input method for entering text and commands into
a computer. A USB keyboard normally consists of a set of keys that are
organized in a certain pattern, the most popular being the QWERTY layout. It
also comes with a cord that plugs into a computer's USB port. Our USB keyboard
is connected to the HPS which is then used to tell the FPGA when to start
recording.

Algorithms

Applications for pitch tracking algorithms include speech recognition, music
analysis, and audio signal processing. One of the simplest and most popular
pitch tracking algorithms is the autocorrelation approach. Finding the lag that
corresponds to the highest peak requires computing the audio signal's
autocorrelation function. The period of the fundamental frequency, which can be
used to determine the pitch, corresponds to this lag. The Fast Fourier Transform
(FFT) and IFFT (Inverse Fast Fourier Transform) routines in C can be used to
create the autocorrelation approach. The harmonic product spectrum (HPS)
approach calculates the sum of the power spectrum and its subsampled
versions. A new spectrum with noticeable harmonic peaks is the result of this.
The pitch can be extracted from the fundamental frequency of the strongest
harmonic peak. The HPS method can be implemented in C using FFT and IFFT
functions.

In order to reduce high-frequency noise and smooth out signals, low pass filtering
is frequently used in audio signal processing. Low pass filters can be
implemented using a variety of techniques in C for audio applications. Typical C
low pass filtering and audio smoothing algorithms include filters with finite
impulse response (FIR). This kind of filter is popularly utilized in audio



applications and has a finite impulse response. To obtain the output signal, the
input signal is convolved with a finite-length impulse response. Several methods,
including windowing, the Parks-McClellan algorithm, and the frequency sampling
approach, can be used to create FIR filters. These can be built in C using the
FFT algorithm or a direct convolution algorithm.

Another type of filter with infinite impulse response that is frequently used in
audio applications is the infinite impulse response (lIR) filter. The input signal and
the output signal are applied iteratively to a set of filter coefficients in this
process. Several methods, including Butterworth, Chebyshev, and elliptic filters,
can be used to create IIR filters. Using recursive algorithms like Direct Form | or
Direct Form I, they can be implemented in C. A median filter is a method that
computes the median of the most recent n samples and the n samples that came
before them, where n is the window size. It helps to eliminate spikes or outliers
from the signal. Using an iterative loop to cycle through the samples and a buffer
to store the previous samples, median filters can be written in C.

Resource Budgets

Using the Avalon audio interface, we can change the sample rate and bit depth
of the data that the Audio CODEC is sending to the FPGA. If we have a sample
rate of 32 kHz, a bit depth of 16 bits from 1 channel and 5 seconds of audio we
get the following:

Total Number of samples = (Sample rate) * (Duration) = 32,000 * 5 = 160,000
samples

Number of bytes per sample = (Bit depth) / 8 bytes per sample = 16 / 8 = 2 bytes
per sample

Total Memory Required = (Total number of samples) * (Number of bytes per
sample) = 160,000 * 2 = 320,000 bytes = 312.5 KB(approx.)

The audio file fits our FPGA memory constraint of 512 KB so we will not have to
worry of running out of space or forgetting about space for overhead.



Hardware and Software Interface

The main hardware-software interface we will be using in our project is the
Avalon bus. Avalon interfaces simplify system design by allowing you to easily
connect components in Intel FPGA. [1] We will be interfacing with the audio data
sent from the Audio CODEC to the FPGA memory of the DE1-SoC board and
implementing our autotune algorithm in the userspace. Our device driver will read
the data coming from this memory and write the data after the audio file has been
altered. In this project, we will use the Avalon Memory Mapped Interface (Avalon
- MM) to read and write the addresses given from these registers.

Clock Resel
Left FIFQ it
- from ADC
Audio Registers } Deserializer [
Avalon Control Right FIFQ
Switch
Fabric Avalon FIFO Space
et | S
Part Left Data
: Cutput
Right Data Left FIFO 1o DAC
Senializer -
Right FIFO

Figure 2: Block Diagram for Audio Core with Memory-Mapped Interface [2]

As for the interfacing for the keyboard, we will be using USB. We will implement
something similar to Lab 2 with interfacing of the keyboard and simply program a
record file to start recording our voice on the microphone by pressing spacebar.



Milestones

Milestone 1: Our first goal is to be able to record our voices through the
microphone with our hardware and store it to memory.

Milestone 2: Our second goal is to be able to implement the autotune algorithm.

Milestone 3: Our third goal is to be able to initialize record.c via keyboard and
output audio file to host computer.

References

[1]https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introductio
n-to-the-interface-specifications.html
[2]https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Audio_core.pdf

[3]https:/learn.sparkfun.com/tutorials/i2c/all#introduction
[4]https://www.intel.com/content/www/us/en/support/programmable/support-resources/d

esign-examples/horizontal/fpga-to-hps-bridges-design-example.html
[5]https://www.projectrhea.org/rheal/index.php/Embedded Fixed Point FFT
[6]https://www.juansaudio.com/ampliir-vs-fir-understanding-their-differences




