
ParVarys: Parallelizing Coflow Scheduling in Haskell
Project Report - COMS 4995 Parallel Functional Programming

Etesam Ansari, Yunlan Li
Columbia University

{ea2905, yl4387}@columbia.edu

1 Introduction

We parallelized the Varys [4] coflow scheduling algorithm
in Haskell. We utilized the data parallelism in Varys us-
ing Haskell’s Eval monad and Strategy, and lazy data
structures to parallelize Varys. Our parallel implementation
achieved a max speed-up of 4x on a Macbook Pro M1 with
10 cores and 16GB memory.

In Section 2, we present some background on coflow
scheduling and the Varys algorithm. In Section 3, we de-
scribe our sequential Haskell implementation of Varys, and
then proceed to discuss how we parallelized it in Section 4,
where we also present benchmark results that illustrate the
effectiveness of our approaches and the pitfalls we encoun-
tered. Lastly, we summarize our takeaways from this project
in Section 5.

2 Coflow Scheduling

Datacenter networks typically optimize for TCP flow com-
pletion time(FCT). However, nowadays, a datacenter appli-
cation task could rarely be completed by sending a single
request to another datacenter server. This has led to a mis-
match between the network optimization objective(FCT) and
application-level objective(Task Completion Time): minimiz-
ing FCT doesn’t necessarily contribute to better task comple-
tion time. To address this challenge, a new abstraction called
coflow is proposed: a collection of flows that share a common
performance goal.

Figure 1: The partition/aggregate design pattern [3].

For example, web search workloads typically use a par-
tition/aggregator model [3] where a user query will trigger
multiple subtasks to search for results in each shard stored
on different servers. The results from each shard are then
aggregated to compute the final answer to be sent back to
the user. In this example, all flows created for answering the
user query would belong to the same coflow. Because latency
observed by the end user is determined by the slowest of all
flows of this coflow, it makes sense to optimize for this metric
termed coflow completion time(CCT). By doing so, we could
observe better application and end-user experience.

In the network community, there has been a large body of
work to find a near-optimal coflow scheduling algorithm to
minimize the average CCT. 1

2.1 Offline Coflow Scheduling Problem (CSP)

Figure 2: Coflow scheduling over a 3×3 datacenter fabric
with three ingresss/egress ports. Flows in ingress ports are
organized by destinations and color-coded by coflows - C1 in
orange/light and C2 in blude/dark [4].

The offline coflow scheduling problem is defined as fol-
lows:

• the datacenter network fabric is abstracted into a single
big switch consisting of m ingress ports (ToR switches)

1The average CCT of a collection of coflows.

1

and n egress ports (ToR switches)

• assume all coflows arrive simultaneously at time t =
0, and the information about each coflow (number of
flows, size, source and destination port of each flow) is
all known [4].

The goal is to find a schedule for the coflows (order, rate)
to minimize the average CCT. This problem is NP-hard (via
reduction from concurrent open-shop scheduling problem).

2.2 Varys
Varys uses a Smallest-Effective-Bottleneck-First (SEBF)
heuristic to produce a near-optimal ordering of coflows, and
then perform rate allocations to optimize average CCT.

Γ
C = max

max
i

∑i di j

Rem
(
Pin

i
) ,max

j

∑ j di j

Rem
(

Pout
j

)
 (1)

Figure 3: Varys Offline Coflow Scheduling Algorithm [4].

In equation 1

• ΓC represents the shortest effective bottleneck for
coflow C

• di j represents the size of data that goes from ingress port
i to egress port j

• Rem(.) represents the remaining bandwidth of an ingress
port or egress port

• Pin
i represents ingress port i, Pout

j represents egress port
j

The Shortest job first (SJF) scheduling discipline is optimal
for flow scheduling. SEBF can be viewed as an approximation
for shortest job first in the context of coflow scheduling where
a coflow consist of one or more flows instead of just one.

3 Sequential Haskell Implementation

3.1 CSP Representation
In datacenter networks, a centrallized controller running on
comodity servers will be informed of the global view of net-
work states, run Varys to perform coflow scheduling and
finally disseminate the results to end switches. In an of-
fline CSP problem, the network view consists of the state
- switch ingress/egress bandwidth, and flow information - of
all switches (see Figure 2).

In our implementation, a flow is abstracted into the Flow
datatype, which holds the coflow id it belongs to, its flow size,
and the egress port destination.

data Flow = Flow
{ coflowId :: Int
, size :: Int
, destinationId :: Int
}
deriving Show

We use Switch datatype to represent each ingress/egress
port iId :: Int, which contains a number of flows ::
[Flow] and has ingress/egress link rates specified by two
Int.

data Switch = Switch
{ iId :: Int
, flows :: [Flow]
, iBandwidth :: Int
, eBandwidth :: Int
}
deriving Show

With these, we define the input to Varys - i.e. a CSP prob-
lem - as the datatype CSP which is a datacenter-wide view of
network state consisting of ingress and egress switch states.

data CSP = CSP
{ ingressSwitches :: [Switch]
, egressSwitches :: [Switch]
}
deriving Show

3.2 CSP Generator
We implement generateProblem to generate an offline
CSP problem with numIngress :: Int ingress switches
and numEgress :: Int egress switches. In addition, the
function takes three specifications RandomFlowSpec,
RandomSwitchSpec, and RandomSwitchSpec that
defines the parameters for randomly generating the flows,
ingress switches, and egress switches. In particular, for
each ingress switch, we chose an Int in the range
specified by minFlows :: Int and maxFlows :: Int

2

of ingressSwitchSpec :: RandomSwitchSpec as the
number of flows. Each flow has a size and coflow id ran-
domly generated with min and max threshold specified by
RandomFlowSpec.

data RandomFlowSpec = RandomFlowSpec
{ minSwitchId :: Int
, maxSwitchId :: Int
, minCoflowId :: Int
, maxCoflowId :: Int
, minFlowSize :: Int
, maxFlowSize :: Int
}

data RandomSwitchSpec = RandomSwitchSpec
{ minFlows :: Int
, maxFlows :: Int
, ingressBandwidth :: Int
, egressBandwidth :: Int
}

generateProblem
:: RandomFlowSpec
-> RandomSwitchSpec
-> RandomSwitchSpec
-> Int
-> Int
-> IO CSP

The flow and switch specification can be defined by setting
relevant command line options:
% stack exec ParVarys-exe -- -h
ParVarys: Parallel Varys Coflow Scheduling Using SEBF

Usage: ParVarys-exe [-t|--type STRING] [-n|--coflows NUMBER]
[-i|--ingress NUMBER] [-e|--egress NUMBER]
[-s|--min-flow-size NUMBER] [-S|--max-flow-size NUMBER]
[-f|--min-switch-flows NUMBER]
[-F|--max-switch-flows NUMBER]
[-b|--ingress-bandwith NUMBER] [-B|--egress-bandwith NUMBER]
[--seed NUMBER]

Generates an offline coflow scheduling problem, and uses the Varys Shortest
Effective Bottlneck First heuristic to order the coflows.

Available options:
-h,--help Show this help text
-t,--type STRING Varys mode: seq, parMap, chunk (default: "parMap")
-n,--coflows NUMBER Number of coflows (default: 4000)
-i,--ingress NUMBER Number of ingress switches (default: 1000)
-e,--egress NUMBER Number of egress switches (default: 1000)
-s,--min-flow-size NUMBER

Smallest flow size in bytes (default: 0)
-S,--max-flow-size NUMBER

Largest flow size in bytes (default: 1000)
-f,--min-switch-flows NUMBER

Minimum number of flows arriving at an ingress switch
(default: 0)

-F,--max-switch-flows NUMBER
Maximum number of flows arriving at an ingress switch
(default: 5000)

-b,--ingress-bandwith NUMBER
Ingress bandwidth (Gb/s) of a switch (default: 40)

-B,--egress-bandwith NUMBER
Egress bandwidth (Gb/s) of a switch (default: 40)

--seed NUMBER Seed for global pseudo-random number generator
(default: 4995)

We use Haskell’s standard pseudo-random number genera-
tor StdGen from the System.Random module. To repro-
duce a given CSP problem, one can specify an integer via the
option --seed to seed the pseudo-random number generator.

3.3 Varys Controller
The Varys algorithm consists of two parts:

1. coflow ordering using the Shortest Effective Bottleneck
First (SEBF) heuristic where the shortest effective bot-
tleneck Γ of each coflow is computed with equation 1.

2. bandwidth allocation given the global coflow ordering
in part 1.

For this project, we implemented part 1 and leave part 2 as
future work.

The key insight is that the input to Varys CSP is a network-
view centering around Switch entites, whereas Γ is a statis-
tics derived from a coflow and switch bandwidth. This mo-
tivated us to first transform CSP into an intermediate rep-
resentation that includes a coflow table CoflowMap ::
IntMap Coflow and a switch bandwidth lookup table
BandwidthTable.

type Switch2Flow = IntMap.IntMap [Flow]
data FlowDirection = Ingress | Egress deriving (Eq, Show)
data Coflow =
Coflow Int -- coflow id
[Flow] -- all flows belonging to this coflow
Switch2Flow -- flows grouped by ingress switch
Switch2Flow -- flows grouped by egress switch
deriving (Show)

type CoflowMap = IntMap.IntMap Coflow
type BandwidthTable = Map.Map (Int, FlowDirection) Int

This transformation is enabled by two functions that tra-
verse the ingress and egress switches of CSP to incrementally
build the desired CoflowMap and BandwidthTable.

getSwitchBandwidth :: CSP -> BandwidthTable
toCoflows :: CSP -> CoflowMap

With the abstraction of Coflow, computation of Γ be-
comes simple: the first fraction is a left-fold over the flows
grouped by ingress switch with Rem(.) looked up using
the BandwidthTable, and the second fraction is a left
fold over the flows grouped by egress switch. The compu-
tation of Γ is implemented by getGamma which takes in a
BandwidthTable, Coflow and produces a Rational
that represents the shortest effective bottleneck for the given
coflow.

getGamma :: BandwidthTable -> Coflow -> Rational

Lastly, we sort the coflows by their shortest effective bott-
lenck to produce a global coflow ordering schedule.

-- Given a Coflow Scheduling Problem,
-- use the SEBF heuristic to order the Coflows.
--
-- Returns [(coflow id, shortest effective bottleneck)]
sebf :: CSP -> [(Int, Rational)]
sebf csp = Key.sort snd $ map f coflows
where
switchLinkRates = getSwitchBandwidth csp
coflows = IntMap.toList $ toCoflows csp
f (cid, coflow) = (cid, getGamma switchLinkRates coflow)

3

4 Parallelizing Varys

Unless otherwise specified, our experiments are run on an
Apple Macbook Pro M1 with 10 cores and 16GB memory. We
run both sequential and parallel version of our implementation
of Varys on a CSP problem with 1000 ingress ports, 1000
egress ports, a maximum of 2000 coflows with a maximum
flow size of 1000 bytes, and a maximum of 500 flows at
each ingress port. In addition, both the ingress and egress
bandwidth are set to 40Gbps. To ensure reproducibility of the
generated CSP problem, we used the default seed of 4995.

We chose the parameters that generate the CSP problem so
that it simulates a realistic workload in modern day datacen-
ters where it’s typical to have a fleet of thousands of servers,
and thousands of coflows arriving per second.

4.1 Garbage Collector Optimization

(a) without garbage collector configuration

(b) with ghc options -H8G -I10

Figure 4: Threadscope visualizing event traces of sequential
Varys running on a single HEC, with and without tuning GHC
runtime options of garbage collector.

Figure 4(a) shows that when we run our sequential imple-
mentation of Varys with the default GHC settings, our applica-
tion thread is frequently interleaved with the garbage collector
thread (active throughout the duration of the program). This
is explained by the scale of the problem we run our program
against: thousands of switches and coflows whose data struc-
tures contains hundreds of flows, leaving a very large memory
footprint.

Because of Amdahl’s law, frequent interleaving garbage
collection work would significantly limit the speedup we can
achieve, we thus limit garbage collection by utilizing two
GHC RTS options: -H for providing a suggested heap size for
the garbage collector, and -I to increase the amount of time
that must pass before an idle GC is performed [1]. We used
30s for the -I option, which is much larger than the time it
takes for the program to run, and 8G (which is the maximum
amount of memory typically available on the Macbook Pro
M1) as the suggested heap size. Unless otherwise specified,
these are the GHC RTS options we used for benchmarking.

This proved to be quite effective as can be seen from the

comparison in Figure 4. Garbage collection disappears after
1.55s, yielding a 1.8x speedup (from 471.91ms to 265.69ms).

4.2 Data Parallelism

Figure 5: Average wall-clock time and average speed-up of
Parvarys vs # HECs.

There are two main opportunities for data parallelism in
our sequential implementation of Varys, which we exploit
using Haskell’s Eval Monad and Strategy. We manage
to obtain a max speedup of 2.75x on 12 cores (see Figure 6).
This is much lower than what we had expected and could
partly be attributed to long pause of application threads due
to garbage collection (see Figure 6).

Computation of ΓC Recall equation 1, this represents the
shortest effective bottleneck for a coflow C. Importantly, it
is independent of ΓC′

of other coflows, meaning that Γ of
all coflows can be computed in parallel. We fully evalu-
ate f (cid, coflow) :: (Int, Rational) to normal
form using rdeepseq. To prevent spark overflow, we set a
limit of the spark pool size with maxParSparks = 4000 using
parBuffer.

parSebf :: CSP -> [(Int, Rational)]
parSebf csp = Key.sort

snd
(map f coflows `using` parBuffer maxParSparks rdeepseq)
where
switchLinkRates = parGetSwitchBandwidth csp
coflows = IntMap.toList $ parToCoflows csp
f (cid, coflow) = (cid, getGamma switchLinkRates coflow)

Building CoflowMap from Ingress Switches This conver-
sion is a left-fold over ingressSwitches :: Switch
to produce a coflowMap :: IntMap Coflow. For each
switch, the accumulator function iterates over each flow ::
Flow of the switch, add updates the accumulated coflowMap
by cons the flow to flowsByIngress :: [Flow] and
flowsByEgress :: [Flow] of the coflow it belongs to.
This accumulator function is associative, which allows us
to transform it into a map and parallelize it. In particular, we

4

(1) split the ingress switches into chunks of 10, (2) build a par-
tial coflowMap for each chunk, and (3) finally merge all the
partial maps together using unionsWith. The construction of
partial coflowMap for each chunk could then be parallelized
using parBuffer maxParSparks rdeepseq.

data FlowDirection = Ingress | Egress deriving (Eq, Show)

instance NFData FlowDirection where
rnf dir = dir `seq` ()

-- coflow: id flows flowsByIngress flowsByEgress
data Coflow = Coflow Int [Flow] Switch2Flow Switch2Flow
deriving Show

instance NFData Coflow where
rnf (Coflow cid flows iFlows eFlows) =

cid `seq` rnf flows `seq` rnf iFlows `seq` rnf eFlows

-- parallel version of toCoflows
parToCoflows :: CSP -> CoflowMap
parToCoflows csp = IntMap.unionsWith
mergeCoflow
(map f switchess `using` parBuffer maxParSparks rdeepseq)
where
f = IntMap.unionsWith mergeCoflow . map (update
IntMap.empty)↪→

switchess = chunksOf 10 $ ingressSwitches csp

Figure 6: Threadscope visualizing event traces of parallel
Varys running on 4 HECs, with data parallelism enabled.

The granularity of our data parallelism is fine enough to
produce enough sparks to keep all HECs busy and is coarse
enough to make the overhead of parallelization (spark cre-
ation, chunking, etc) worth it. For example, building a partial
map from 10 ingress switches consist of a left-fold over thou-
sands of flows. This is illustrated in Figure 6 where we can
see work are spread evenly on all 4 HECs and constantly
keeps the HECs busy. At time 1.39s to 1.41s, only HEC 2
busy, which is a result of the sequential unionsWith of partial
coflowMaps in parToCoflow :: CSP -> CoflowMap.
We mitigate this in Section 4.2 by using lazy maps. Lastly,
near the end around 1.53s, again only HEC 3 is busy, this is
due to sequentially sorting (coflowId :: Int, gamma ::
Rational) pairs in parSebf. For thousands of coflows, this
wasn’t a bottleneck and thus we didn’t attempt to parallelize
it. However, when there are hundreds of thousands of coflows
or more, this becomes the main performance bottleneck (see
Figure 10 in Section 4.3).

Figure 7: Threadscope visualizing event traces of paral-
lel Varys running on 4 HECs, with data parallelism en-
abled and using lazy maps and chunking for building
BandwidthTable and CoflowMap.

4.3 Lazy Coflow Transformation

To futher improve speed-up, we reduce the amount
of sequential work performed in parToCoflows ::
CSP -> CoflowMap by using lazy IntMap from
Data.List.IntMap.Lazy module.

A lazy map is strict in its keys but lazy in its values [2]. This
allows us to delay the computation of map values when they
are needed, i.e. during the calculation of shortest-effective-
bottleneck ΓC for each coflow C. Since we parallelized the
calculation of ΓC, the evaluation of the map value of type
Co f low to normal form could thus be parallelized. With this
change, we no longer spot the sequential merge of partial
coflowMaps in threadscope (Figure 7), where only a single
HEC is busy.

Figure 8: Comparison of average elapsed wall-clock time
and speed-ups for building partial lazy CoflowMaps using
chunks of N ingress switches and then perform a sequential
union of these lazy IntMaps.

Initially, we thought chunk size we use to split ingress
switches plays a big role in speedup, but experiment results

5

say otherwise as Figure 8 shows. Initially, we thought that
the amount of time the sequential IntMap.unionsWith is
related to the number of maps it merges, so using a larger
chunk size would take less time to complete. We later realized
that this was incorrect since the time complexity of unions
is determined by the number of keys, which would be the
same regardless of the chunk size we choose. This explains
the negligible difference in performance for different chunk
sizes used.

4.4 Amdahl’s Law Strikes

Figure 9: Threadscope visualizing event traces of parallel
Varys running on 12 HECs, with all parallelization optimiza-
tions enabled.

Before parallelizing Varys, transforming the problem into
coflowMap and calculating the shortest-effective-bottleneck
for each coflow are the performance bottleneck. After paral-
lelizing Varys, the more HECs we use, the less time it takes
to perform the aforementioned calculations. What previously
account for a small percentage of the total computation time
now start to dominate and become the new bottleneck that
prevent further speed-up (see Figure 9. This gives us an al-
ternative view of Amdahl’s Law, which is performance bot-
tleneck shifts as we parallelize the algorithm, and eventually
the sequential portion becomes the bottleneck that prevents
further possibility for speed-up.

Initially, we thought Varys is straightforward to parallelize
and easy to achieve linear speed-ups. However, as can be seen
from our discussion so far, this is far from the case. Issues
such as garbage collection due to the memory-intensive nature
of the algorithm, map merging that’s inherently sequential
make Varys hard to parallelize. To make things worse, when
there are hundreds of thousands coflows or more, sorting
coflows by their shortest-effective-bottleneck now dominates
the computation time as Figure 10 shows.

Figure 10: Threadscope visualizing event traces of parallel
Varys running on 10 HECs solving a CSP problem of up
to 500K coflows, 1K ingress ports and a maximum of 5000
flows per each ingress port.

5 Takeaways

Parallelizing Varys was harder than we expected and the
amount of speed-ups achieved was also surprisingly far from
our expectation going into the project. However, we found
this project to be an interesting one and were able to take
away something meaningful:

1. garbage collection can be really expensive for memory-
intensive applications

2. alternative view of Amdahl’s law is that performance
bottleneck shifts

3. lazy data structures can be helpful for parallelization, and
Haskell’s paradigm of defining a structure for holding
computation and a strategy to evaluate the computation
is very elegant

References

[1] ghc runtime options. https://
downloads.haskell.org/ghc/latest/docs/
users_guide/runtime_control.html#
rts-options-to-control-the-garbage-collector.

[2] Haskell lazy map. https://hackage.haskell.org/
package/containers-0.6.6/docs/Data-Map-Lazy.
html.

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz,
Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta
Sengupta, and Murari Sridharan. Data center tcp (dctcp).
In Proceedings of the ACM SIGCOMM 2010 Conference,
SIGCOMM ’10, page 63–74, New York, NY, USA, 2010.
Association for Computing Machinery.

[4] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Effi-
cient coflow scheduling with varys. In Proceedings of the

6

https://downloads.haskell.org/ghc/latest/docs/users_guide/runtime_control.html#rts-options-to-control-the-garbage-collector
https://downloads.haskell.org/ghc/latest/docs/users_guide/runtime_control.html#rts-options-to-control-the-garbage-collector
https://downloads.haskell.org/ghc/latest/docs/users_guide/runtime_control.html#rts-options-to-control-the-garbage-collector
https://downloads.haskell.org/ghc/latest/docs/users_guide/runtime_control.html#rts-options-to-control-the-garbage-collector
https://hackage.haskell.org/package/containers-0.6.6/docs/Data-Map-Lazy.html
https://hackage.haskell.org/package/containers-0.6.6/docs/Data-Map-Lazy.html
https://hackage.haskell.org/package/containers-0.6.6/docs/Data-Map-Lazy.html

2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
page 443–454, New York, NY, USA, 2014. Association
for Computing Machinery.

7

Appendix

src/Generator.hs

1 {-# LANGUAGE FlexibleContexts #-}
2 {-# LANGUAGE GADTs #-}
3 {-# LANGUAGE NamedFieldPuns #-}
4

5 module Generator
6 (RandomFlowSpec(..)
7 , RandomSwitchSpec(..)
8 , Flow(..)
9 , Switch(..)

10 , CSP(..)
11 , generateProblem
12) where
13

14 import Control.DeepSeq (NFData
15 , rnf
16)
17 import System.Random (randomRIO)
18

19 data Flow = Flow
20 { coflowId :: Int
21 , size :: Int
22 , destinationId :: Int
23 }
24 deriving Show
25

26 instance NFData Flow where
27 rnf (Flow cid size dId) = cid `seq` size `seq` dId `seq` ()
28

29 data Switch = Switch
30 { iId :: Int
31 , flows :: [Flow]
32 , iBandwidth :: Int
33 , eBandwidth :: Int
34 }
35 deriving Show
36

37 -- Coflow Scheduling Problem
38 data CSP = CSP
39 { ingressSwitches :: [Switch]
40 , egressSwitches :: [Switch]
41 }
42 deriving Show
43

44 data RandomFlowSpec = RandomFlowSpec
45 { minSwitchId :: Int
46 , maxSwitchId :: Int
47 , minCoflowId :: Int
48 , maxCoflowId :: Int
49 , minFlowSize :: Int
50 , maxFlowSize :: Int

8

51 }
52

53 data RandomSwitchSpec = RandomSwitchSpec
54 { minFlows :: Int
55 , maxFlows :: Int
56 , ingressBandwidth :: Int
57 , egressBandwidth :: Int
58 }
59

60 -- FUNCTIONS:
61 -- Generates random Integer from lb to ub (inclusive? Yes)
62 generateRandomNum :: Int -> Int -> IO Int
63 generateRandomNum lb ub = do
64 randomRIO (lb, ub)
65

66 generateFlows :: RandomFlowSpec -> Int -> IO [Flow]
67 generateFlows spec n = if n <= 0
68 then do
69 return []
70 else do
71 flows <- generateFlows spec $ n - 1
72 coflowId <- generateRandomNum (minCoflowId spec) (maxCoflowId spec)
73 egressSwitchId <- generateRandomNum (minSwitchId spec) (maxSwitchId spec)
74 flowSize <- generateRandomNum (minFlowSize spec) (maxFlowSize spec)
75

76 return $ Flow coflowId flowSize egressSwitchId : flows
77

78 generateSwitches
79 :: RandomFlowSpec -> RandomSwitchSpec -> Int -> Int -> IO [Switch]
80 generateSwitches flowSpec switchSpec minId maxId = if maxId - minId < 0
81 then do
82 return []
83 else do
84 numOfFlows <- generateRandomNum (minFlows switchSpec) (maxFlows switchSpec)
85 flows <- generateFlows flowSpec numOfFlows
86 let switch = Switch minId
87 flows
88 (ingressBandwidth switchSpec)
89 (egressBandwidth switchSpec)
90

91 switches <- generateSwitches flowSpec switchSpec (minId + 1) maxId
92 return $ switch : switches
93

94 generateProblem
95 :: RandomFlowSpec
96 -> RandomSwitchSpec
97 -> RandomSwitchSpec
98 -> Int
99 -> Int

100 -> IO CSP
101 generateProblem flowSpec ingressSwitchSpec egressSwitchSpec numIngress numEgress
102 = do
103 let (minIngressId, maxIngressId) = (1, numIngress)
104 (minEgressId , maxEgressId) = (numIngress + 1, numIngress + numEgress)

9

105

106 iSwitches <- generateSwitches flowSpec
107 ingressSwitchSpec
108 minIngressId
109 maxIngressId
110 eSwitches <- generateSwitches flowSpec
111 egressSwitchSpec
112 minEgressId
113 maxEgressId
114

115 return $ CSP iSwitches eSwitches

10

src/Controller.hs

1 {-# LANGUAGE NamedFieldPuns #-}
2

3 module Controller
4 (Coflow(..)
5 , toCoflows
6 , parToCoflows
7 , getSwitchBandwidth
8 , getGamma
9 , sebf

10 , parSebf
11) where
12

13 import Control.DeepSeq (NFData
14 , rnf
15)
16 import Control.Parallel.Strategies (parBuffer
17 , rdeepseq
18 , using
19)
20 import qualified Data.IntMap.Lazy as IntMap
21 import qualified Data.List.Key as Key
22 import Data.List.Split (chunksOf)
23 import qualified Data.Map.Lazy as Map
24 import Data.Maybe (fromMaybe)
25 import Data.Ratio ((%))
26

27 import Generator (CSP(..)
28 , Flow(..)
29 , Switch(..)
30)
31

32

33 data FlowDirection = Ingress | Egress deriving (Eq, Show)
34

35 instance NFData FlowDirection where
36 rnf dir = dir `seq` ()
37

38 instance Ord FlowDirection where
39 a <= b = case (a, b) of
40 (Egress, Ingress) -> False
41 _ -> True
42

43 -- coflow: id flows flowsByIngress flowsByEgress
44 data Coflow = Coflow Int [Flow] Switch2Flow Switch2Flow
45 deriving Show
46

47 instance NFData Coflow where
48 rnf (Coflow cid flows iFlows eFlows) =
49 cid `seq` rnf flows `seq` rnf iFlows `seq` rnf eFlows
50

51

52 type Switch2Flow = IntMap.IntMap [Flow]

11

53 type CoflowMap = IntMap.IntMap Coflow
54 type BandwidthTable = Map.Map (Int, FlowDirection) Int
55

56

57 maxParSparks :: Int
58 maxParSparks = 4000
59

60 updateMap :: Int -> Flow -> Switch2Flow -> Switch2Flow
61 updateMap k v = IntMap.alter f k
62 where
63 f pv = case pv of
64 Nothing -> Just [v]
65 Just vs -> Just $ v : vs
66

67 addFlow :: CoflowMap -> (Int, Flow) -> CoflowMap
68 addFlow currMap (ingressPort, flow) = IntMap.alter f (coflowId flow) currMap
69 where
70 egressPort = destinationId flow
71 f val = case val of
72 Nothing -> Just $ Coflow (coflowId flow)
73 [flow]
74 (IntMap.singleton ingressPort [flow])
75 (IntMap.singleton egressPort [flow])
76 Just (Coflow cid coflow flowsByISwitch flowsByESwitch) -> Just $ Coflow
77 cid
78 (flow : coflow)
79 (updateMap ingressPort flow flowsByISwitch)
80 (updateMap egressPort flow flowsByESwitch)
81

82 update :: CoflowMap -> Switch -> CoflowMap
83 update currMap switch =
84 foldl addFlow currMap $ zip (repeat $ iId switch) (flows switch)
85

86 -- Assumes that the coflowId of the two coflows passed in are the same
87 mergeCoflow :: Coflow -> Coflow -> Coflow
88 mergeCoflow (Coflow cid flows ingress egress) (Coflow _ flows' ingress' egress')
89 = Coflow cid
90 (flows ++ flows')
91 (IntMap.unionWith (++) ingress ingress')
92 (IntMap.unionWith (++) egress egress')
93

94 toCoflows :: CSP -> CoflowMap
95 toCoflows csp = foldl update IntMap.empty $ ingressSwitches csp
96

97 parToCoflows :: CSP -> CoflowMap
98 parToCoflows csp = IntMap.unionsWith
99 mergeCoflow

100 (map f switchess `using` parBuffer maxParSparks rdeepseq)
101 where
102 f = IntMap.unionsWith mergeCoflow . map (update IntMap.empty)
103 switchess = chunksOf 10 $ ingressSwitches csp
104

105 getSwitchBandwidth :: CSP -> BandwidthTable
106 getSwitchBandwidth csp = Map.fromList $ concatMap f switches where

12

107 f (Switch sid _ iBw eBw) = [((sid, Ingress), iBw), ((sid, Egress), eBw)]
108 switches = ingressSwitches csp ++ egressSwitches csp
109

110 parGetSwitchBandwidth :: CSP -> BandwidthTable
111 parGetSwitchBandwidth csp = Map.fromList $ concat
112 (map (concatMap f) switchess `using` parBuffer maxParSparks rdeepseq)
113 where
114 f (Switch sid _ iBw eBw) = [((sid, Ingress), iBw), ((sid, Egress), eBw)]
115 switchess = chunksOf 20 $ ingressSwitches csp ++ egressSwitches csp
116

117 getGamma :: BandwidthTable -> Coflow -> Rational
118 getGamma bwTbl (Coflow _ _ ingressFlows egressFlows) = max
119 (maximum ingressTimes)
120 (maximum egressTimes)
121 where
122 sumFlows :: (Int, [Flow]) -> (Int, Int)
123 sumFlows (switchId, flows) = (switchId, foldl (\a el -> a + size el) 0 flows)
124

125 calcTime :: FlowDirection -> (Int, Int) -> Rational
126 calcTime flowDir (switchId, flowSize) = fromIntegral flowSize
127 % fromIntegral bandwidth
128 where bandwidth = fromMaybe 0 $ Map.lookup (switchId, flowDir) bwTbl
129

130 ingressTimes = map (calcTime Ingress . sumFlows) $ IntMap.toList ingressFlows
131 egressTimes = map (calcTime Egress . sumFlows) $ IntMap.toList egressFlows
132

133

134 -- Given a Coflow Scheduling Problem, use Shortest Effective Bottleneck First
135 -- heuristic to order the Coflows.
136 --
137 -- Returns [(coflow id, effective bottleneck)]
138 sebf :: CSP -> [(Int, Rational)]
139 sebf csp = Key.sort snd $ map f coflows
140 where
141 switchLinkRates = getSwitchBandwidth csp
142 coflows = IntMap.toList $ toCoflows csp
143 f (cid, coflow) = (cid, getGamma switchLinkRates coflow)
144

145 -- Parallel version of sebf
146 parSebf :: CSP -> [(Int, Rational)]
147 parSebf csp = Key.sort
148 snd
149 (map f coflows `using` parBuffer maxParSparks rdeepseq)
150 where
151 switchLinkRates = parGetSwitchBandwidth csp
152 coflows = IntMap.toList $ parToCoflows csp
153 f (cid, coflow) = (cid, getGamma switchLinkRates coflow)

13

app/Main.hs

1 {-# LANGUAGE NamedFieldPuns #-}
2

3 import Control.DeepSeq (force)
4 import Control.Exception (evaluate)
5 import Control.Monad (join)
6 import Formatting (fprintLn)
7 import Formatting.Clock (timeSpecs)
8 import Generator (RandomFlowSpec(..)
9 , RandomSwitchSpec(..)

10 , generateProblem
11)
12 import Options.Applicative
13 import System.Clock
14 import System.Exit (die)
15 import System.Random (mkStdGen
16 , setStdGen
17)
18

19 import Controller (parSebf
20 , sebf
21)
22

23 -- Arg Parser template adapted from:
24 -- https://ro-che.info/articles/2016-12-30-optparse-applicative-quick-start
25 main :: IO ()
26 main = join . customExecParser (prefs showHelpOnError) $ info
27 (helper <*> parser)
28 (fullDesc
29 <> header "ParVarys: Parallel Varys Coflow Scheduling Using SEBF "
30 <> progDesc
31 ("Generates an offline coflow scheduling problem, and uses the "
32 ++ "Varys Shortest Effective Bottlneck First heuristic to order "
33 ++ "the coflows."
34)
35)
36 where
37 parser :: Parser (IO ())
38 parser =
39 work
40 <$> strOption
41 (long "type"
42 <> short 't'
43 <> metavar "STRING"
44 <> help "Varys mode: seq, parMap"
45 <> value "parMap"
46 <> showDefault
47)
48 <*> option
49 auto
50 (long "coflows"
51 <> short 'n'
52 <> metavar "NUMBER"

14

53 <> help "Number of coflows"
54 <> value 4000
55 <> showDefault
56)
57 <*> option
58 auto
59 (long "ingress"
60 <> short 'i'
61 <> metavar "NUMBER"
62 <> help "Number of ingress switches"
63 <> value 1000
64 <> showDefault
65)
66 <*> option
67 auto
68 (long "egress"
69 <> short 'e'
70 <> metavar "NUMBER"
71 <> help "Number of egress switches"
72 <> value 1000
73 <> showDefault
74)
75 <*> option
76 auto
77 (long "min-flow-size"
78 <> short 's'
79 <> metavar "NUMBER"
80 <> help "Smallest flow size in bytes"
81 <> value 0
82 <> showDefault
83)
84 <*> option
85 auto
86 (long "max-flow-size"
87 <> short 'S'
88 <> metavar "NUMBER"
89 <> help "Largest flow size in bytes"
90 <> value 1000
91 <> showDefault
92)
93 <*> option
94 auto
95 (long "min-switch-flows"
96 <> short 'f'
97 <> metavar "NUMBER"
98 <> help "Minimum number of flows arriving at an ingress switch"
99 <> value 0

100 <> showDefault
101)
102 <*> option
103 auto
104 (long "max-switch-flows"
105 <> short 'F'
106 <> metavar "NUMBER"

15

107 <> help "Maximum number of flows arriving at an ingress switch"
108 <> value 5000
109 <> showDefault
110)
111 <*> option
112 auto
113 (long "ingress-bandwith"
114 <> short 'b'
115 <> metavar "NUMBER"
116 <> help "Ingress bandwidth (Gb/s) of a switch"
117 <> value 40
118 <> showDefault
119)
120 <*> option
121 auto
122 (long "egress-bandwith"
123 <> short 'B'
124 <> metavar "NUMBER"
125 <> help "Egress bandwidth (Gb/s) of a switch"
126 <> value 40
127 <> showDefault
128)
129 <*> option
130 auto
131 (long "seed"
132 <> metavar "NUMBER"
133 <> help "Seed for global pseudo-random number generator"
134 <> value 4995
135 <> showDefault
136)
137

138

139 work
140 :: String
141 -> Int
142 -> Int
143 -> Int
144 -> Int
145 -> Int
146 -> Int
147 -> Int
148 -> Int
149 -> Int
150 -> Int
151 -> IO ()
152 work mode numCoflows numIngress numEgress minFlowSize maxFlowSize minFlows maxFlows

ingressBandwidth egressBandwidth seed↪→

153 = do
154 sebfImpl <- case mode of
155 "seq" -> return sebf
156 "parMap" -> return parSebf
157 _ ->
158 die
159 $ "Unrecognized varys mode: "

16

160 ++ "expect one of seq, parMap, got "
161 ++ show mode
162

163 let flowSpec = RandomFlowSpec { minSwitchId = numIngress + 1
164 , maxSwitchId = numIngress + numEgress
165 , minCoflowId = 1
166 , maxCoflowId = numCoflows
167 , minFlowSize
168 , maxFlowSize
169 }
170

171 ingressSwitchSpec = RandomSwitchSpec { minFlows
172 , maxFlows
173 , ingressBandwidth
174 , egressBandwidth
175 }
176

177 egressSwitchSpec = RandomSwitchSpec { minFlows = 0
178 , maxFlows = 0
179 , ingressBandwidth
180 , egressBandwidth
181 }
182

183 -- seed the global pseudo-random number generator
184 -- for reproducibility of CSP problems
185 setStdGen $ mkStdGen seed
186 problem <- generateProblem flowSpec
187 ingressSwitchSpec
188 egressSwitchSpec
189 numIngress
190 numEgress
191

192 start <- getTime Monotonic
193 coflowOrder <- evaluate $ force $ sebfImpl problem
194 end <- getTime Monotonic
195

196 print coflowOrder
197 putStr "Calculation Time: "
198 fprintLn timeSpecs start end

17

test/Spec.hs

1 import Data.Ratio ((%))
2 import System.Random (mkStdGen
3 , setStdGen
4)
5 import Test.HUnit
6

7 import Controller (parSebf
8 , sebf
9)

10 import Generator (CSP(..)
11 , Flow(..)
12 , RandomFlowSpec(..)
13 , RandomSwitchSpec(..)
14 , Switch(..)
15 , generateProblem
16)
17

18 testSebf1 :: Test
19 testSebf1 = TestCase
20 (do
21 let csp = CSP
22 { ingressSwitches =
23 [Switch
24 { iId = 1
25 , iBandwidth = 1
26 , eBandwidth = 1
27 , flows = [Flow { coflowId = 1, size = 4, destinationId = 5 }]
28 }
29 , Switch
30 { iId = 2
31 , iBandwidth = 1
32 , eBandwidth = 1
33 , flows = [Flow { coflowId = 1, size = 1, destinationId = 6 }
34 , Flow { coflowId = 2, size = 2, destinationId = 6 }
35]
36 }
37 , Switch
38 { iId = 3
39 , iBandwidth = 1
40 , eBandwidth = 1
41 , flows = [Flow { coflowId = 1, size = 2, destinationId = 4 }
42 , Flow { coflowId = 2, size = 2, destinationId = 4 }
43]
44 }
45]
46

47 , egressSwitches = [Switch { iId = n
48 , iBandwidth = 1
49 , eBandwidth = 1
50 , flows = []
51 }
52 | n <- [4 .. 6]

18

53]
54 }
55

56 assertEqual "" [(2, 2 % 1), (1, 4 % 1)] $ sebf csp
57)
58

59 testSebf2 :: Test
60 testSebf2 = TestCase
61 (do
62 let csp = CSP
63 { ingressSwitches =
64 [Switch
65 { iId = 1
66 , iBandwidth = 2
67 , eBandwidth = 1
68 , flows = [Flow { coflowId = 1, size = 4, destinationId = 5 }]
69 }
70 , Switch
71 { iId = 2
72 , iBandwidth = 1
73 , eBandwidth = 1
74 , flows = [Flow { coflowId = 1, size = 1, destinationId = 6 }
75 , Flow { coflowId = 2, size = 2, destinationId = 4 }
76]
77 }
78 , Switch
79 { iId = 3
80 , iBandwidth = 1
81 , eBandwidth = 1
82 , flows = [Flow { coflowId = 1, size = 2, destinationId = 4 }
83 , Flow { coflowId = 2, size = 2, destinationId = 4 }
84]
85 }
86]
87

88 , egressSwitches =
89 [Switch { iId = 4, iBandwidth = 1, eBandwidth = 1, flows = [] }
90 , Switch { iId = 5, iBandwidth = 1, eBandwidth = 4, flows = [] }
91 , Switch { iId = 6, iBandwidth = 1, eBandwidth = 1, flows = [] }
92]
93 }
94

95 assertEqual "" [(1, 2 % 1), (2, 4 % 1)] $ sebf csp
96)
97

98 -- validate the correctness of parallel implementation using
99 -- the sequential implementation of SEBF

100 testParSebf1 :: Test
101 testParSebf1 = TestCase
102 (do
103 let seed = 91845734
104 flowSpec = RandomFlowSpec { minSwitchId = 201
105 , maxSwitchId = 400
106 , minCoflowId = 1

19

107 , maxCoflowId = 1000
108 , minFlowSize = 0
109 , maxFlowSize = 100
110 }
111 ingressSpec = RandomSwitchSpec 0 100 40 40
112 egressSpec = RandomSwitchSpec 0 0 40 40
113

114 setStdGen $ mkStdGen seed
115 problem <- generateProblem flowSpec ingressSpec egressSpec 200 200
116 assertEqual "" (sebf problem) (parSebf problem)
117)
118

119

120 main :: IO Counts
121 main = runTestTT $ TestList
122 ["SEBF Sequential (varys_paper_fig1)" ~: testSebf1
123 , "SEBF Sequential (variable_link_rates)" ~: testSebf2
124 , "SEBF Parallel (parMap)" ~: testParSebf1
125]

20

	Introduction
	Coflow Scheduling
	Offline Coflow Scheduling Problem (CSP)
	Varys

	Sequential Haskell Implementation
	CSP Representation
	CSP Generator
	Varys Controller

	Parallelizing Varys
	Garbage Collector Optimization
	Data Parallelism
	Lazy Coflow Transformation
	Amdahl's Law Strikes

	Takeaways

