
COMS W4995: Parallel Functional Programming Project Report

Min-Max Kalah

Haruki Gonai and David Cendejas
{hg2541, dc3448}@columbia.edu

December 22, 2022

1 Abstract

Kalah is a two-player game involving seeds and a board with pits. Kalah is a solved game,
meaning an optimal move can be found by traversing a tree of each player’s moves using
algorithms such as min-max and alpha-beta pruning. However, sequential implementations
of these algorithms have large execution times due to Kalah’s large search space. For this
reason, we attempted various techniques at parallelizing min-max and alpha-beta pruning to
speed up the execution times.

2 Introduction

Kalah is played with seeds and a board with pits. The board consists of 12 small pits, called
houses, and two big pits, called stores, as shown in Figure 1. Initially, each house contains
four seeds.

Figure 1: Initial board arrangement in Kalah

Player 0 owns the bottom row of six houses and the store to the right of them. Player
1 owns the top row of six houses and the store to the left of them. Each turn, a player
picks one of their own houses that contains at least one seed. The player then removes the
seeds from the house and deposits a seed into each pit (except the opponent’s store), going
counter-clockwise.

1

COMS W4995: Parallel Functional Programming Project Report

For example, suppose it is player 0’s turn and they choose their third house from the right.
Player 0 would remove the four seeds from this house and deposit a seed into each pit, going
counter-clockwise, as depicted in Figure 2.

Figure 2: Kalah board after a move

Each player takes turns making a move, and the objective of the game is to have more total
seeds in your houses and store than the opponent when the game ends.

Some additional rules are as follows:

• If the last pit into which the player deposits a seed during a move is their own store,
they get another move.

• If the last pit into which the player deposits a seed during a move is an empty house
that belongs to them, and the opponent’s house across from it is not empty, then the
player moves all the seeds in these two houses to the player’s store.

• The game ends when one player has no seeds in any of their houses, at which point the
winner is whoever has more total seeds in their houses and store [2].

3 Design and Implementation

3.1 Kalah State

To implement min-max and alpha-beta pruning for Kalah, a data structure storing the current
state of the Kalah game was necessary. Hence, we created State:

import qualified Data.Vector as V

...

data State = State (V.Vector Int) Bool

V.Vector Int contains 14 contiguous Ints and keeps track of the seeds in each of the Kalah
board’s pits. The V.Vector Int is used as a circular buffer, and each index of it represents
a pit of the board, going counter-clockwise, i.e.:

• Indices 0 to 5 represent player 0’s houses.

2

COMS W4995: Parallel Functional Programming Project Report

• Index 6 represents player 0’s store.

• Indices 7 to 12 represent player 1’s houses.

• Index 13 represents player 1’s store.

Using a Vector, as opposed to other data structures such as a list, was crucial to access these
indices in constant time.

Bool, which is also part of State, keeps track of whose turn it is. Its value is true if and only
if it is player 0’s turn.

3.2 Kalah Gameplay

After creating State, we wrote several functions to implement the rules of Kalah. For
example, the makeMove function takes in the current State, s, and an Int, a, representing
the index of the house picked for the move. The function returns the successor State wrapped
in the Maybe monad if the move is valid.

import qualified Data.Vector as V

...

-- Given a State and a house to pick, outputs the resulting State

makeMove :: State -> Int -> Maybe State

makeMove s@(State board isP0Turn) a = do

if isValidMove s a

then do

let boardFunc i

| i == a = 0

| otherwise = board V.! i

let n = board V.! a

return $ deposit (a + 1) (-1) boardFunc n isP0Turn

else do

Nothing

-- Given a state and a move, is the move valid?

isValidMove :: State -> Int -> Bool

isValidMove (State board isP0Turn) a

| isP0Turn = 0 <= a && a <= 5 && houseNotEmpty

| otherwise = 7 <= a && a <= 12 && houseNotEmpty

where houseNotEmpty = houseIsNotEmpty board a

-- Is the house empty?

houseIsNotEmpty :: (V.Vector Int) -> Int -> Bool

3

COMS W4995: Parallel Functional Programming Project Report

houseIsNotEmpty board i = board V.! i /= 0

-- Deposit seeds around the Kalah board

deposit :: Int -> Int -> (Int -> Int) -> Int -> Bool -> State

deposit i prev f n isP0Turn

| n == 0 = State (V.generate 14 $ steal f prev isP0Turn) nxtIsP0Turn

| (i == 6 && not isP0Turn) || (i == 13 && isP0Turn) =

deposit iNxt prev f n isP0Turn

| otherwise = deposit iNxt i fNew (n - 1) isP0Turn

where fNew i'

| i == i' = (f i') + 1

| otherwise = f i'

iNxt = mod (i + 1) 14

nxtIsP0Turn = (prev == 6 && isP0Turn) ||

(prev /= 13 && not isP0Turn)

-- Steal seeds from opponent if possible

steal :: (Int -> Int) -> Int -> Bool -> (Int -> Int)

steal f lastPit isP0Turn

| lastPitOurs && canSteal = fNew

| otherwise = f

where lastPitOurs = (isP0Turn && (0 <= lastPit && lastPit <= 5)) ||

(not isP0Turn && (7 <= lastPit && lastPit <= 12))

seedsInLast = f lastPit

pitAcross = 12 - lastPit

seedsAcross = f pitAcross

canSteal = seedsInLast == 1 && seedsAcross /= 0

fNew i

| i == lastPit || i == pitAcross = 0

| (isP0Turn && i == 6) || (not isP0Turn && i == 13) =

(f i) + seedsInLast + seedsAcross

| otherwise = f i

makeMove first calls the isValidMove function to check whether a is a valid move for the
current player (i.e. if the player owns house a, and house a is not empty). If this is the case,
makeMove calls the deposit function, which simulates depositing a seed into each pit, going
counter-clockwise. Once there are no more seeds to deposit, deposit calls steal. steal

checks if the last seed landed in one of the player’s empty houses and if the opponent’s house
across from it is non-empty, in which case the player moves the seeds in these two houses to
their store.

We also wrote isTerm to determine whether the game has ended (i.e. either player has no
seeds in any of their houses).

4

COMS W4995: Parallel Functional Programming Project Report

-- Is the game over?

isTerm :: State -> Bool

isTerm (State board _) = (V.sum $ V.slice 0 6 board) == 0 ||

(V.sum $ V.slice 7 6 board) == 0

Additionally, we wrote util, which is player 0’s score minus player 1’s score, where each
player’s score is the total number of seeds in their houses and store.

-- Player 0's score - Player 1's score

util :: State -> Int

util (State board _) = (V.sum $ V.slice 0 7 board) -

(V.sum $ V.slice 7 7 board)

When the game ends, a positive return value from util means that player 0 has won. A
negative return value means that player 1 has won, etc. Since the function determines the
winner at the end of the game, we also decided to use it as the heuristic to evaluate non-
terminal states when the search depth limit is reached in min-max and alpha-beta pruning.

3.3 Kalah AI

3.3.1 Sequential Versions

After implementing the rules of Kalah, we wrote a basic Kalah AI by implementing sequential
min-max (SeqMM) and sequential alpha-beta pruning (SeqAB). To ensure that the algorithms
terminate in a reasonable amount of time, we imposed a depth limit k on the search.

To implement SeqMM, we wrote the following runMM function:

-- Sequential MM

runMM :: Int -> State -> (Int, Int)

runMM k s

| k == 0 || isTerm s = (util s, -1)

| getIsP0Turn s = maximumBy valMoveOrdering childrenMMRes

| otherwise = minimumBy valMoveOrdering childrenMMRes

where succs = genSuccs s

childrenMMRes = [(fst $ runMM (k - 1) s', a) | (a, s') <- succs]

genSuccs :: State -> [(Int, State)]

genSuccs s = [(a, unwrapState $ makeMove s a) | a <- getValidMoves s]

where unwrapState (Just s') = s'

unwrapState Nothing = error "Something went wrong during MinMax"

valMoveOrdering :: (Int, Int) -> (Int, Int) -> Ordering

valMoveOrdering (v0,_) (v1,_) = compare v0 v1

5

COMS W4995: Parallel Functional Programming Project Report

This implementation of min-max differs from that of most min-max algorithms, in which max

calls min and then min calls max. The reason for this is that in Kalah, a player is granted
another move if their last seed lands in their store. Hence, we abstracted min and max via
runMM. runMM will find whose turn it is using the isP0Turn field of State, and use it to
determine whether to maximize or minimize the utility of the children states accordingly.

The algorithm for SeqAB is similar, but slightly more involved since branches must be pruned:

-- Sequential AB

runAB :: Int -> State -> (Int, Int) -> (Int, Int)

runAB k s (a, b)

| k == 0 || isTerm s = (util s, -1)

| getIsP0Turn s = maxAB (k - 1) (a, b) (negInfty, -1) succs

| otherwise = minAB (k - 1) (a, b) (posInfty, -1) succs

where succs = genSuccs s

maxAB :: Int -> (Int, Int) -> (Int, Int) -> [(Int, State)] -> (Int, Int)

maxAB _ _ (v, move) [] = (v, move)

maxAB k (a, b) (v, move) ((sMove, s):succs)

| v' > b = (v', move')

| otherwise = maxAB k (a', b) (v', move') succs

where (v2, _) = runAB k s (a, b)

(v', move', a')

| v2 > v = (v2, sMove, max a v)

| otherwise = (v, move, a)

minAB :: Int -> (Int, Int) -> (Int, Int) -> [(Int, State)] -> (Int, Int)

minAB _ _ (v, move) [] = (v, move)

minAB k (a, b) (v, move) ((sMove, s):succs)

| v' <= a = (v', move')

| otherwise = minAB k (a, b') (v', move') succs

where (v2, _) = runAB k s (a, b)

(v', move', b')

| v2 < v = (v2, sMove, min b v)

| otherwise = (v, move, b)

3.3.2 Parallel Versions

To speed up our sequential AIs, we attempted to parallelize min-max and alpha-beta pruning
in various ways.

Our first parallel implementation was a parallelized version of min-max (ParThenMM).

-- Run par MM for parDepth layers, then seq MM for deeper layers

6

COMS W4995: Parallel Functional Programming Project Report

runParThenMM :: Int -> Int -> State -> (Int, Int)

runParThenMM parDepth k s

| k == 0 || isTerm s = (util s, -1)

| parDepth == 0 = runMM k s

| getIsP0Turn s = maximumBy valMoveOrdering childrenMMRes

| otherwise = minimumBy valMoveOrdering childrenMMRes

where succs = genSuccs s

runMMOnSucc (a, s') =

(fst $ runParThenMM (parDepth - 1) (k - 1) s', a)

childrenMMRes = parMap rdeepseq runMMOnSucc succs

In ParThenMM, we perform the search in parallel for parDepth layers, and then use SeqMM for
the deeper layers. We decided to limit the depth to which we use parallelism to avoid too
many sparks from being created, which would slow down the execution time.

After implementing ParThenMM, we recognized that instead of performing SeqMM for these
deeper layers, we could use SeqAB. We created this implementation, called ParThenAB, by
just changing the use of runMM above with runAB:

-- Run par MM for parDepth layers, then seq AB for deeper layers

runParThenAB :: Int -> Int -> State -> (Int, Int)

runParThenAB parDepth k s

| k == 0 || isTerm s = (util s, -1)

| parDepth == 0 = runAB k s (negInfty, posInfty)

| getIsP0Turn s = maximumBy valMoveOrdering childrenMMRes

| otherwise = minimumBy valMoveOrdering childrenMMRes

where succs = genSuccs s

runMMOnSucc (a, s') =

(fst $ runParThenAB (parDepth - 1) (k - 1) s', a)

childrenMMRes = parMap rdeepseq runMMOnSucc succs

To further optimize our implementation, we turned toward the ”Younger Brothers Wait
Concept” algorithm [3]. The goal of this algorithm is to fix the lack of pruning in the first
parDepth layers of ParThenAB. It accomplishes this by running SeqAB on the first child,
updating the α or β value, pruning if possible, and then running the ”Young Brothers Wait
Concept” algorithm recursively in parallel on the other children. After parDepth layers,
SeqAB is used to evaluate the deeper layers.

This implementation, which we refer to as YoungBros, was written as follows:

-- Run seq AB on first child, prune, then recurse on rest of children

-- Once parDepth is reached, only seq AB is used

runYoungBros :: Int -> Int -> State -> (Int, Int) -> (Int, Int)

runYoungBros parDepth k s (a, b)

7

https://www.chessprogramming.org/Young_Brothers_Wait_Concept
https://www.chessprogramming.org/Young_Brothers_Wait_Concept

COMS W4995: Parallel Functional Programming Project Report

| k == 0 || isTerm s = (util s, -1)

| parDepth == 0 = runAB k s (a, b)

| getIsP0Turn s = runYoungBrosMax (parDepth - 1) (k - 1) (a, b) succs

| otherwise = runYoungBrosMin (parDepth - 1) (k - 1) (a, b) succs

where succs = genSuccs s

runYoungBrosMax :: Int -> Int -> (Int, Int) -> [(Int, State)] -> (Int, Int)

runYoungBrosMax _ _ _ [] = error "Something went wrong during MinMax"

runYoungBrosMax parDepth k (a, b) ((house, s):succs)

| v > b = (v, move)

| otherwise = maximumBy valMoveOrdering ((v, house):childrenMMRes)

where (v, move) = runAB k s (a, b)

a' = max a v

runYoungBrosOnSucc (house', s') =

(fst $ runYoungBros parDepth k s' (a', b), house')

childrenMMRes = parMap rdeepseq runYoungBrosOnSucc succs

runYoungBrosMin :: Int -> Int -> (Int, Int) -> [(Int, State)] -> (Int, Int)

runYoungBrosMin _ _ _ [] = error "Something went wrong during MinMax"

runYoungBrosMin parDepth k (a, b) ((house, s):succs)

| v <= a = (v, move)

| otherwise = minimumBy valMoveOrdering ((v, house):childrenMMRes)

where (v, move) = runAB k s (a, b)

b' = min b v

runYoungBrosOnSucc (house', s') =

(fst $ runYoungBros parDepth k s' (a, b'), house')

childrenMMRes = parMap rdeepseq runYoungBrosOnSucc succs

8

COMS W4995: Parallel Functional Programming Project Report

4 Results

Before measuring the speed-up of the parallel implementations compared to the sequential
ones, we decided to find the best configurations for the parallel implementations, in terms of
number of cores and parallelism depth limit (parDepth).

To standardize measurements across the different implementations, we fixed the search depth
limit (k) to 9 for all of our tests. We chose this number because for all the implementations,
the search terminated in a reasonable amount of time for this search depth (i.e. neither too
fast nor too slow).

We performed the benchmark tests using the Criterion package for Haskell. For each parallel
AI, we varied the number of cores between 2 and 8 and parDepth between 1 and 9. For
each of these configurations, we ran the AI on the initial Kalah board using the default
configuration for Criterion and benchmarked the mean execution time.

Figure 3: Mean Execution Time Vs. parDepth for ParThenMM

Figure 3 shows a graph of mean execution time vs. parDepth on various numbers of cores for
the ParThenMM AI. We observed that as the number of cores increased, the execution time
for a given parDepth improved. For 4 to 9 cores, we also observed that from a parDepth

of 1 to 3, the execution time improved. However, as parDepth increased beyond that, the
execution time gradually worsened, likely due to too many sparks being created. The fastest
mean execution time was on 8 cores around a parDepth of 3.

Figure 4 shows mean execution time vs. parDepth for various numbers of cores for ParThenAB.
We observed that as the parDepth increased, the performance worsened, likely due to fewer
opportunities to prune. Generally, the performance improved as the number of cores in-

9

https://hackage.haskell.org/package/criterion-1.6.0.0/docs/src/Criterion.Main.Options.html#defaultConfig
https://hackage.haskell.org/package/criterion-1.6.0.0/docs/src/Criterion.Main.Options.html#defaultConfig

COMS W4995: Parallel Functional Programming Project Report

Figure 4: Mean Execution Time Vs. parDepth for ParThenAB

creased. However, at a parDepth of 1, the execution time on 6 cores was faster than that on
7 or 8 cores. A potential cause for this issue may have been due to the increased overhead
required to coordinate parallelism as the number of cores increased past 6. Overall, the ideal
configuration for ParThenAB was on 6 cores with a parDepth of 1.

Figure 5: Mean Execution Time Vs. parDepth for YoungBros

10

COMS W4995: Parallel Functional Programming Project Report

Figure 5 shows mean execution time vs. parDepth for different numbers of cores for YoungBros.
In general, the execution time decreased as the number of cores were varied from 2 to 6, but
increased as the number of cores were changed from 6 to 8. We again believe that this was
due to increased overhead in coordinating parallelism when using more than 6 cores. We
also observed that from a parDepth of 1 to around 3, the execution time decreased. Past a
parDepth of 3, the execution time stayed relatively constant. Overall, we determined that
the ideal configuration for YoungBros was on 6 cores with a parDepth of 3.

After finding the ideal configurations for our parallel implementations, we compared their
execution times with those of the sequential implementations.

Figure 6: Mean Execution Time by Implementation

Figure 6 is a chart of the mean execution time of all implementations on the initial Kalah
board. We found that SeqMM had the slowest execution time. This was expected because
SeqMM runs the min-max algorithm with no optimization. ParThenMM, on 8 cores and a
parDepth of 3, had the next slowest execution time, followed by SeqAB. We were surprised
that SeqAB had a faster execution time than ParThenMM, which reflected the importance of
pruning nodes for better performance.

On the other hand, YoungBros and ParThenAB had the fastest execution times. This matched
our expectations since these implementations were the most optimized out of the 5. However,
we did not expect that ParThenAB would be faster than YoungBros, since the purpose of
YoungBros was to introduce more opportunities for pruning to improve the execution time
beyond that of ParThenAB.

To summarize the total speed up achieved by introducing parallelism, ParThenAB’s execution
time was roughly 21.933 times faster than that of SeqMM and 2.991 times faster than that of

11

COMS W4995: Parallel Functional Programming Project Report

SeqAB.

4.1 Spark Conversion Ratios

To further evaluate our parallel implementations, we also investigated their spark conversion
ratios (i.e. the number of sparks converted divided by the number of sparks created). For
each parallel implementation, we once again varied the number of cores between 2 and 8
and parDepth between 1 and 9. For each of these configurations, we ran the implementation
on the initial Kalah board using the default configuration for Criterion and calculated the
average spark conversion ratio (SCR).

(a) SCR vs. parDepth for ParThenMM (b) SCR vs. parDepth for ParThenAB

(c) SCR vs. parDepth for YoungBros

Figure 7: SCR for ParThenMM, ParThenAB, YoungBros

For each parallel implementation, we found that as the number of cores increased, the SCR
increased for a fixed parDepth. Additionally, as the parDepth increased, the SCR decreased
dramatically, likely due to too many sparks being created and most sparks fizzling or being
garbage collected.

12

https://hackage.haskell.org/package/criterion-1.6.0.0/docs/src/Criterion.Main.Options.html#defaultConfig

COMS W4995: Parallel Functional Programming Project Report

5 Conclusion and Next Steps

We observed that the performance of the Kalah AIs improved greatly when using parallelism.
In particular, the fastest AI, ParThenAB, exhibited a mean execution time that was several
times greater than those of the sequential SeqMM and SeqAB AIs.

We also observed that increasing the number of cores improves the ratio of sparks converted
to total sparks created. However, for ParThenAB and YoungBros, the execution time worsens
as the number of cores increases past 6, most likely due to too much overhead required to
coordinate parallelism for more cores.

In the future, we intend to investigate the Kalah AIs further and improve them in several
ways. For example, we could seek ways to improve the AI by modifying the underlying
Kalah game implementation. For instance, we could use Repa instead of Vector and use
its computeP function to compute the next state in parallel inside of the makeMove function.
Additionally, we created parallel variants of isTerm and util that compute the two sum

calls in parallel, but they have yet to be tested and benchmarked. We could also repeat the
analysis on different sized Kalah boards and different initial seed configurations.

13

COMS W4995: Parallel Functional Programming Project Report

6 Code Listing

6.1 app/Main.hs

module Main (main) where

import Text.Read

import MinMax

import Play

import Benchmark

import System.Environment

import System.Exit

main :: IO ()

main = do

args <- getArgs

case args of

["pve", mode, params] -> do

minMaxConfig <- parseModeAndParams mode params

pVsAI minMaxConfig

["eve", mode1, params1, mode2, params2] -> do

minMaxConfig1 <- parseModeAndParams mode1 params1

minMaxConfig2 <- parseModeAndParams mode2 params2

aIVsAI minMaxConfig1 minMaxConfig2

exitFailure

["onemove", mode, params] -> do

minMaxConfig <- parseModeAndParams mode params

runOneMove minMaxConfig

("benchmark":benchmarkName) -> do

runBench benchmarkName

_ -> do

pn <- getProgName

let usage = "Usage: " ++ pn ++ " pve AI_1_mode AI_1_params\n\

\Usage: " ++ pn ++ " eve AI_1_mode AI_1_params \

\AI_2_mode AI_2_params\n\

\Usage: " ++ pn ++ " onemove AI_1_mode AI_1_params"

die $ usage

parseModeAndParams :: String -> String -> IO MinMaxConfig

parseModeAndParams mode' params' = do

case mode' of

"seq_mm" -> do

14

COMS W4995: Parallel Functional Programming Project Report

depth <- parseOne params'

return $ MinMaxConfig SeqMM depth (-1)

"seq_ab" -> do

depth <- parseOne params'

return $ MinMaxConfig SeqAB depth (-1)

"par_then_mm" -> do

(depth, parDepth) <- parseTwo params'

return $ MinMaxConfig ParThenMM depth parDepth

"par_then_ab" -> do

(depth, parDepth) <- parseTwo params'

return $ MinMaxConfig ParThenAB depth parDepth

"young_bros" -> do

(depth, parDepth) <- parseTwo params'

return $ MinMaxConfig YoungBros depth parDepth

_ -> do

die $ "Error: AI Mode must be one of \

\[seq_mm, seq_ab, par_then_mm, par_then_ab, young_bros]"

parseOne :: String -> IO Int

parseOne params' = do

case readMaybe params' of

Just arg1 -> do

if arg1 < 0 then

die $ "Error: search_depth_limit must be non-negative"

else return arg1

Nothing -> do

die $ "Error: AI params must be specified as \"(search_depth_limit)\""

parseTwo :: String -> IO (Int, Int)

parseTwo params' = do

case readMaybe params' of

Just (arg1,arg2) -> do

if arg1 < 0 || arg2 < 0 then

die $ "Error: search_depth_limit and parallelism_depth_limit must \

\be non-negative"

else return (arg1,arg2)

Nothing -> do

die $ "Error: AI params must be specified as \"(search_depth_limit,\

\parallelism_depth_limit)\""

15

COMS W4995: Parallel Functional Programming Project Report

6.2 src/Benchmark.hs

module Benchmark

(runBench

) where

import Criterion.Main

import MinMax

import Kalah

import System.Environment

-- Runs tests on our Kalah AI implementations with search depth limit 9

runBench :: [String] -> IO ()

runBench benchmarkName = withArgs benchmarkName tests

where genBench mode dep = [bench (show dep) $ doBench mode dep]

doBench mode dep = nf doBench' $ MinMaxConfig mode dep (-1)

genBenchPar mode dep range =

[bench (show i) $ doBenchPar mode dep i | i <- range]

doBenchPar mode dep parDep =

nf doBench' $ MinMaxConfig mode dep parDep

doBench' minMaxConfig = computeAIMove minMaxConfig initState

tests =

defaultMain [

bgroup "seq_mm" $ genBench SeqMM 9

, bgroup "seq_ab" $ genBench SeqAB 9

, bgroup "par_then_mm" $ genBenchPar ParThenMM 9 [1..9]

, bgroup "par_then_ab" $ genBenchPar ParThenAB 9 [1..9]

, bgroup "young_bros" $ genBenchPar YoungBros 9 [1..9]

]

16

COMS W4995: Parallel Functional Programming Project Report

6.3 src/Kalah.hs

{-# LANGUAGE TypeOperators #-}

module Kalah

(State(..),

initState,

makeMove,

isTerm,

isTermPar,

util,

utilPar,

getValidMoves,

whoseTurn,

getBoardString,

whoWon,

getScore,

getIsP0Turn

) where

import qualified Data.Vector as V

import Control.DeepSeq

import Control.Parallel.Strategies

import Text.Format

data State = State (V.Vector Int) Bool

instance NFData State where

rnf (State board isP0Turn) = board `deepseq` isP0Turn `seq` ()

-- Initial Kalah state

initState :: State

initState = State (V.generate 14 f) True

where f i

| i == 6 || i == 13 = 0

| otherwise = 4

-- Given a State and a house to pick, outputs the resulting State

makeMove :: State -> Int -> Maybe State

makeMove s@(State board isP0Turn) a = do

if isValidMove s a

then do

let boardFunc i

| i == a = 0

17

COMS W4995: Parallel Functional Programming Project Report

| otherwise = board V.! i

let n = board V.! a

return $ deposit (a + 1) (-1) boardFunc n isP0Turn

else do

Nothing

-- Deposit seeds around the Kalah board

deposit :: Int -> Int -> (Int -> Int) -> Int -> Bool -> State

deposit i prev f n isP0Turn

| n == 0 = State (V.generate 14 $ steal f prev isP0Turn) nxtIsP0Turn

| (i == 6 && not isP0Turn) || (i == 13 && isP0Turn) =

deposit iNxt prev f n isP0Turn

| otherwise = deposit iNxt i fNew (n - 1) isP0Turn

where fNew i'

| i == i' = (f i') + 1

| otherwise = f i'

iNxt = mod (i + 1) 14

nxtIsP0Turn = (prev == 6 && isP0Turn) ||

(prev /= 13 && not isP0Turn)

-- Steal seeds from opponent if possible

steal :: (Int -> Int) -> Int -> Bool -> (Int -> Int)

steal f lastPit isP0Turn

| lastPitOurs && canSteal = fNew

| otherwise = f

where lastPitOurs = (isP0Turn && (0 <= lastPit && lastPit <= 5)) ||

(not isP0Turn && (7 <= lastPit && lastPit <= 12))

seedsInLast = f lastPit

pitAcross = 12 - lastPit

seedsAcross = f pitAcross

canSteal = seedsInLast == 1 && seedsAcross /= 0

fNew i

| i == lastPit || i == pitAcross = 0

| (isP0Turn && i == 6) || (not isP0Turn && i == 13) =

(f i) + seedsInLast + seedsAcross

| otherwise = f i

-- Is the game over?

isTerm :: State -> Bool

isTerm (State board _) = (V.sum $ V.slice 0 6 board) == 0 ||

(V.sum $ V.slice 7 6 board) == 0

18

COMS W4995: Parallel Functional Programming Project Report

-- Player 0's score - Player 1's score

util :: State -> Int

util (State board _) = (V.sum $ V.slice 0 7 board) -

(V.sum $ V.slice 7 7 board)

-- Given a state, what are the valid moves?

getValidMoves :: State -> [Int]

getValidMoves (State board isP0Turn)

| isP0Turn = filter (houseNotEmpty) [0..5]

| otherwise = filter (houseNotEmpty) [7..12]

where houseNotEmpty = houseIsNotEmpty board

-- Given a state and a move, is the move valid?

isValidMove :: State -> Int -> Bool

isValidMove (State board isP0Turn) a

| isP0Turn = 0 <= a && a <= 5 && houseNotEmpty

| otherwise = 7 <= a && a <= 12 && houseNotEmpty

where houseNotEmpty = houseIsNotEmpty board a

-- Is the house empty?

houseIsNotEmpty :: (V.Vector Int) -> Int -> Bool

houseIsNotEmpty board i = board V.! i /= 0

-- Which player's turn is it?

whoseTurn :: State -> Int

whoseTurn (State _ True) = 0

whoseTurn (State _ False) = 1

-- Function to expose isP0Turn inside State

getIsP0Turn :: State -> Bool

getIsP0Turn (State _ isP0Turn) = isP0Turn

-- Pretty prints the board

-- Trust me, it actually looks fine

getBoardString :: State -> String

getBoardString (State board _) = format template $ numsAsStrings

where template = " 13 12 11 10 9 8\n\

\ _____ _____ _____ _____ _____ _____ _____ _____\n\

\| | | | | | | | |\n\

\| | {12} | {11} | {10} | {9} | {8} | {7} | |\n\

\| {13} |_____|_____|_____|_____|_____|_____| {6} |\n\

\| | | | | | | | |\n\

19

COMS W4995: Parallel Functional Programming Project Report

\| | {0} | {1} | {2} | {3} | {4} | {5} | |\n\

\|_____|_____|_____|_____|_____|_____|_____|_____|\n\

\ 1 2 3 4 5 6"

numsAsStrings = fmap (padNum . show) $ V.toList board

padNum i

| length i == 2 = i

| otherwise = " " ++ i

-- Who won?

whoWon :: State -> String

whoWon state

| utilVal > 0 = "Player 0 wins!"

| utilVal < 0 = "Player 1 wins!"

| otherwise = "Tie!"

where utilVal = util state

-- Prints each player's score

getScore :: State -> String

getScore (State board _) =

"Player 0 score: " ++ p0Score ++ " - Player 1 score: " ++ p1Score

where p0Score = show $ V.sum $ V.slice 0 7 board

p1Score = show $ V.sum $ V.slice 7 7 board

-- isTerm and util, but in parallel

isTermPar :: State -> Bool

isTermPar (State board _) = runEval $ do

a <- rpar $ (V.sum $ V.slice 0 6 board) == 0

b <- rpar $ (V.sum $ V.slice 7 6 board) == 0

_ <- rseq $ a || b

return $ a || b

utilPar :: State -> Int

utilPar (State board _) = runEval $ do

a <- rpar $ V.sum $ V.slice 0 7 board

b <- rpar $ V.sum $ V.slice 7 7 board

_ <- rseq a

_ <- rseq b

return $ a - b

20

COMS W4995: Parallel Functional Programming Project Report

6.4 src/MinMax.hs

module MinMax

(computeAIMove,

MinMaxConfig(..),

MinMaxMode(..)

) where

import Kalah

import Data.List(maximumBy, minimumBy)

import Control.Parallel.Strategies

data MinMaxConfig = MinMaxConfig { mmMode :: MinMaxMode

, depthLimit :: Int

, parLimit :: Int }

data MinMaxMode = SeqMM | SeqAB | ParThenMM | ParThenAB | YoungBros

deriving (Enum)

posInfty :: Int

posInfty = 99999999

negInfty :: Int

negInfty = -posInfty

genSuccs :: State -> [(Int, State)]

genSuccs s = [(a, unwrapState $ makeMove s a) | a <- getValidMoves s]

where unwrapState (Just s') = s'

unwrapState Nothing = error "Something went wrong during MinMax"

-- Sequential MM

runMM :: Int -> State -> (Int, Int)

runMM k s

| k == 0 || isTerm s = (util s, -1)

| getIsP0Turn s = maximumBy valMoveOrdering childrenMMRes

| otherwise = minimumBy valMoveOrdering childrenMMRes

where succs = genSuccs s

childrenMMRes = [(fst $ runMM (k - 1) s', a) | (a, s') <- succs]

valMoveOrdering :: (Int, Int) -> (Int, Int) -> Ordering

valMoveOrdering (v0,_) (v1,_) = compare v0 v1

-- Sequential AB

21

COMS W4995: Parallel Functional Programming Project Report

runAB :: Int -> State -> (Int, Int) -> (Int, Int)

runAB k s (a, b)

| k == 0 || isTerm s = (util s, -1)

| getIsP0Turn s = maxAB (k - 1) (a, b) (negInfty, -1) succs

| otherwise = minAB (k - 1) (a, b) (posInfty, -1) succs

where succs = genSuccs s

maxAB :: Int -> (Int, Int) -> (Int, Int) -> [(Int, State)] -> (Int, Int)

maxAB _ _ (v, move) [] = (v, move)

maxAB k (a, b) (v, move) ((sMove, s):succs)

| v' > b = (v', move')

| otherwise = maxAB k (a', b) (v', move') succs

where (v2, _) = runAB k s (a, b)

(v', move', a')

| v2 > v = (v2, sMove, max a v)

| otherwise = (v, move, a)

minAB :: Int -> (Int, Int) -> (Int, Int) -> [(Int, State)] -> (Int, Int)

minAB _ _ (v, move) [] = (v, move)

minAB k (a, b) (v, move) ((sMove, s):succs)

| v' <= a = (v', move')

| otherwise = minAB k (a, b') (v', move') succs

where (v2, _) = runAB k s (a, b)

(v', move', b')

| v2 < v = (v2, sMove, min b v)

| otherwise = (v, move, b)

-- Run par MM for parDepth layers, then seq MM for deeper layers

runParThenMM :: Int -> Int -> State -> (Int, Int)

runParThenMM parDepth k s

| k == 0 || isTerm s = (util s, -1)

| parDepth == 0 = runMM k s

| getIsP0Turn s = maximumBy valMoveOrdering childrenMMRes

| otherwise = minimumBy valMoveOrdering childrenMMRes

where succs = genSuccs s

runMMOnSucc (a, s') =

(fst $ runParThenMM (parDepth - 1) (k - 1) s', a)

childrenMMRes = parMap rdeepseq runMMOnSucc succs

-- Run par MM for parDepth layers, then seq AB for deeper layers

runParThenAB :: Int -> Int -> State -> (Int, Int)

runParThenAB parDepth k s

22

COMS W4995: Parallel Functional Programming Project Report

| k == 0 || isTerm s = (util s, -1)

| parDepth == 0 = runAB k s (negInfty, posInfty)

| getIsP0Turn s = maximumBy valMoveOrdering childrenMMRes

| otherwise = minimumBy valMoveOrdering childrenMMRes

where succs = genSuccs s

runMMOnSucc (a, s') =

(fst $ runParThenAB (parDepth - 1) (k - 1) s', a)

childrenMMRes = parMap rdeepseq runMMOnSucc succs

-- Run seq AB on first child, prune, then recurse on rest of children

-- Once parDepth is reached, only seq AB is used

runYoungBros :: Int -> Int -> State -> (Int, Int) -> (Int, Int)

runYoungBros parDepth k s (a, b)

| k == 0 || isTerm s = (util s, -1)

| parDepth == 0 = runAB k s (a, b)

| getIsP0Turn s = runYoungBrosMax (parDepth - 1) (k - 1) (a, b) succs

| otherwise = runYoungBrosMin (parDepth - 1) (k - 1) (a, b) succs

where succs = genSuccs s

runYoungBrosMax :: Int -> Int -> (Int, Int) -> [(Int, State)] -> (Int, Int)

runYoungBrosMax _ _ _ [] = error "Something went wrong during MinMax"

runYoungBrosMax parDepth k (a, b) ((house, s):succs)

| v > b = (v, move)

| otherwise = maximumBy valMoveOrdering ((v, house):childrenMMRes)

where (v, move) = runAB k s (a, b)

a' = max a v

runYoungBrosOnSucc (house', s') =

(fst $ runYoungBros parDepth k s' (a', b), house')

childrenMMRes = parMap rdeepseq runYoungBrosOnSucc succs

runYoungBrosMin :: Int -> Int -> (Int, Int) -> [(Int, State)] -> (Int, Int)

runYoungBrosMin _ _ _ [] = error "Something went wrong during MinMax"

runYoungBrosMin parDepth k (a, b) ((house, s):succs)

| v <= a = (v, move)

| otherwise = minimumBy valMoveOrdering ((v, house):childrenMMRes)

where (v, move) = runAB k s (a, b)

b' = min b v

runYoungBrosOnSucc (house', s') =

(fst $ runYoungBros parDepth k s' (a, b'), house')

childrenMMRes = parMap rdeepseq runYoungBrosOnSucc succs

computeAIMove :: MinMaxConfig -> State -> Int

23

COMS W4995: Parallel Functional Programming Project Report

computeAIMove (MinMaxConfig mode' k parDepth) s

| k < 0 = error "Invalid search depth limit."

| otherwise =

case mode' of

SeqMM -> snd $ runMM k s

SeqAB -> snd $ runAB k s (negInfty, posInfty)

ParThenMM -> snd $ runParThenMM parDepth k s

ParThenAB -> snd $ runParThenAB parDepth k s

YoungBros -> snd $ runYoungBros parDepth k s (negInfty, posInfty)

24

COMS W4995: Parallel Functional Programming Project Report

6.5 src/Play.hs

module Play

(pVsAI,

aIVsAI,

runOneMove

) where

import Kalah

import Text.Read

import MinMax

-- PvE mode

pVsAI :: MinMaxConfig -> IO ()

pVsAI minMaxConfig = do

putStrLn "Initializing Board..."

let s = initState

putStrLn $ getBoardString s

let computeAIMove' = computeAIMove minMaxConfig

doPVsAI computeAIMove' s

-- PvE mode helper

doPVsAI :: (State -> Int) -> State -> IO ()

doPVsAI computeAI1Move s = do

if isTerm s

then do

let winner = whoWon s

putStrLn winner

let score = getScore s

putStrLn score

return ()

else do

putStrLn $ "Player " ++ (show $ whoseTurn s) ++ "'s turn."

if getIsP0Turn s

then do

s' <- makePlayerTurn s

printAndDoPlay s'

else do

s' <- makeAITurn computeAI1Move s

printAndDoPlay s'

where printAndDoPlay s' = do

putStrLn $ getBoardString s'

25

COMS W4995: Parallel Functional Programming Project Report

putStrLn "\n"

doPVsAI computeAI1Move s'

-- EvE mode

aIVsAI :: MinMaxConfig -> MinMaxConfig -> IO ()

aIVsAI minMaxConfig1 minMaxConfig2 = do

putStrLn "Initializing Board..."

let s = initState

putStrLn $ getBoardString s

let computeAIMove1 = computeAIMove minMaxConfig1

let computeAIMove2 = computeAIMove minMaxConfig2

doAIVsAI computeAIMove1 computeAIMove2 s

-- EvE mode helper

doAIVsAI :: (State -> Int) -> (State -> Int) -> State -> IO ()

doAIVsAI computeAIMove1 computeAIMove2 s = do

if isTerm s

then do

let winner = whoWon s

putStrLn winner

let score = getScore s

putStrLn score

else do

putStrLn $ "Player " ++ (show $ whoseTurn s) ++ "'s turn."

if getIsP0Turn s

then do

s' <- makeAITurn computeAIMove1 s

printAndDoPlay s'

else do

s' <- makeAITurn computeAIMove2 s

printAndDoPlay s'

where printAndDoPlay s' = do

putStrLn $ getBoardString s' ++ "\n"

doAIVsAI computeAIMove1 computeAIMove2 s'

makePlayerTurn :: State -> IO State

makePlayerTurn s = do

let validMoves = map (1+) $ getValidMoves s

putStrLn $ "Valid Moves are: " ++ (show validMoves)

line <- getLine

case readMaybe line of

Nothing -> do

26

COMS W4995: Parallel Functional Programming Project Report

putStrLn "Invalid move."

makePlayerTurn s

Just a -> do

let maybeS' = makeMove s (a - 1)

case maybeS' of

Just s' -> do

return s'

Nothing -> do

putStrLn "Invalid move."

makePlayerTurn s

makeAITurn :: (State -> Int) -> State -> IO State

makeAITurn computeAIMove' s = do

let a = computeAIMove' s

let maybeS' = makeMove s a

case maybeS' of

Just s' -> do

putStrLn $ "AI picked " ++ (show $ a + 1) ++ "."

return s'

Nothing -> do

return $ error $ "AI tried to make invalid move."

-- Just run AI on initial state

runOneMove :: MinMaxConfig -> IO ()

runOneMove minMaxConfig = do

putStrLn "Initializing Board..."

let move = computeAIMove minMaxConfig initState

putStrLn $ "Optimal move is " ++ show move

27

COMS W4995: Parallel Functional Programming Project Report

6.6 test/Spec.hs

import Kalah

import MinMax

import qualified Data.Vector as V

testMakeMove1 :: Bool

testMakeMove1 = case maybeS of

Nothing -> False

Just (State _ turn) ->

case turn of

True -> False

False -> True

where maybeS = makeMove initState 0

testMakeMove2 :: Bool

testMakeMove2 = case maybeS of

Nothing -> False

Just (State _ turn) ->

case turn of

True -> True

False -> False

where maybeS = makeMove initState 2

testIsTerm1 :: Bool

testIsTerm1 = not res

where res = isTerm initState

testIsTerm2 :: Bool

testIsTerm2 = res

where res = isTerm s

s = State (V.generate 14 f) True

f i

| i == 5 = 4

| otherwise = 0

testUtil1 :: Bool

testUtil1 = res == 0

where res = util initState

testUtil2 :: Bool

testUtil2 = res == -18

28

COMS W4995: Parallel Functional Programming Project Report

where res = util s

s = State (V.generate 14 f) True

f i

| i == 8 = 20

| i == 2 = 2

| otherwise = 0

computeAIMove1 :: Bool

computeAIMove1 = move == 5

where move = computeAIMove minMaxConfig initState

minMaxConfig = MinMaxConfig SeqMM 9 (-1)

computeAIMove2 :: Bool

computeAIMove2 = move == 5

where move = computeAIMove minMaxConfig initState

minMaxConfig = MinMaxConfig SeqAB 9 (-1)

computeAIMove3 :: Bool

computeAIMove3 = move == 5

where move = computeAIMove minMaxConfig initState

minMaxConfig = MinMaxConfig ParThenMM 9 2

computeAIMove4 :: Bool

computeAIMove4 = move == 5

where move = computeAIMove minMaxConfig initState

minMaxConfig = MinMaxConfig ParThenAB 9 2

computeAIMove5 :: Bool

computeAIMove5 = move == 5

where move = computeAIMove minMaxConfig initState

minMaxConfig = MinMaxConfig YoungBros 9 2

aiMoveTestState :: State

aiMoveTestState = State (V.generate 14 f) False

where f i

| i < 3 = 4

| 3 <= i && i <= 6 = 3

| 7 <= i && i <= 10 = 1

| otherwise = 6

computeAIMove6 :: Bool

computeAIMove6 = move == 9

29

COMS W4995: Parallel Functional Programming Project Report

where move = computeAIMove minMaxConfig aiMoveTestState

minMaxConfig = MinMaxConfig SeqMM 9 (-1)

computeAIMove7 :: Bool

computeAIMove7 = move == 9

where move = computeAIMove minMaxConfig aiMoveTestState

minMaxConfig = MinMaxConfig SeqAB 9 (-1)

computeAIMove8 :: Bool

computeAIMove8 = move == 9

where move = computeAIMove minMaxConfig aiMoveTestState

minMaxConfig = MinMaxConfig ParThenMM 9 (-1)

computeAIMove9 :: Bool

computeAIMove9 = move == 9

where move = computeAIMove minMaxConfig aiMoveTestState

minMaxConfig = MinMaxConfig ParThenAB 9 (-1)

computeAIMove10 :: Bool

computeAIMove10 = move == 9

where move = computeAIMove minMaxConfig aiMoveTestState

minMaxConfig = MinMaxConfig YoungBros 9 (-1)

main :: IO ()

main = do

let res = and [testMakeMove1, testMakeMove2,

testIsTerm1, testIsTerm2,

testUtil1, testUtil2,

computeAIMove1, computeAIMove2,

computeAIMove3, computeAIMove4,

computeAIMove5, computeAIMove6,

computeAIMove6, computeAIMove7,

computeAIMove8, computeAIMove9,

computeAIMove10]

if res then

putStrLn "Tests Passed!"

else

error "Some Tests Failed."

30

COMS W4995: Parallel Functional Programming Project Report

References

[1] Gonai, H. (2022, November 26). kalah-min-max. GitHub. Retrieved November 28, 2022,
from https://github.com/harukigonai/kalah-min-max

[2] Wikimedia Foundation. (2022, November 6). Kalah. Wikipedia. Retrieved November 28,
2022, from https://en.wikipedia.org/wiki/Kalah

[3] Young Brothers Wait Concept. Young Brothers Wait Concept -
Chessprogramming wiki. (n.d.). Retrieved December 21, 2022, from
https://www.chessprogramming.org/Young Brothers Wait Concept

31

https://github.com/harukigonai/kalah-min-max
https://en.wikipedia.org/wiki/Kalah
https://www.chessprogramming.org/Young_Brothers_Wait_Concept

	Abstract
	Introduction
	Design and Implementation
	Kalah State
	Kalah Gameplay
	Kalah AI
	Sequential Versions
	Parallel Versions

	Results
	Spark Conversion Ratios

	Conclusion and Next Steps
	Code Listing
	app/Main.hs
	src/Benchmark.hs
	src/Kalah.hs
	src/MinMax.hs
	src/Play.hs
	test/Spec.hs

