
Function Programming Project Report
Jiayuan Li

Introduction
In this project, I implemented a serial version of Ford-Fulkerson algorithm to solve the maximum flow problem
given a graph. The Ford-Fulkerson algorithm is a famous algorithm for solving the max-flow/min-cut problems.
The algorithm can be described as following:

Implementation
Graph representation

The graph in this project is represented by the data structure specified above, which is a tuple consist of 3
elements.

[Int] is a list of integer representing all vertices in the graph
Map Int (Set Int) represents the adjacency list, in which each pair (Int, Set Int) represents a
node in the graph and all its neighbors' node ID.
Map (Int, Int) Int contains the capacity information. The key (Int, Int) represent an edge in
the graph, and the value Int represents the residual capacity of the edge.

Find augment path from source to sink

type Graph = ([Int], Map Int (Set Int), Map (Int, Int) Int)

findAugmentingPath :: Graph -> Int -> Int -> Maybe [(Int, Int, Int)]

The function defined above will find an augmented path between the source node and the sink node. The
function receives 3 parameters, a graph defined as above, a source node ID, and a sink node ID.

The findAugmentingPath will use breath-first-search to find whether there is a path from source to sink
in which all the edges has positive residual capacity. If such path doesn't exist, the function will return
Nothing . If a path is identified, the function will return a list of 3-tuples where each tuple represents an
edge in the path and the 3 elements in the tuple are destination of the edge, source of the edge, and
residual capacity of the edge respectively.

Find the bottleneck capacity in a given path

As specified above, the 3 elements in the tuple are destination of the edge, source of the edge, and
residual capacity of the edge respectively. The function will filter the entire path and return the minimum
residual capacity in the path.

Push flow

The function receives 3 parameters. The first parameter is the bottleneck capacity calculated by the last
function, which is the flow that can be pushed alone the path. The second parameter is the augmented
path, and the third parameter is the capacity information of the graph. The function will return updated
capacity information after the flow is pushed among the specified augmented path.

The push process involves both subtract the flow from each edges' residual capacity among the
augmented path and add the flow to each reverse edges' residual capacity among the augmented path.

Final Function Call

With the implementation of the previous helper functions, we can now implement the Ford-Fulkerson
algorithm. Inside the function there is a helper function go that recursively calls itself. The go function is
defined by

where the first parameter is the current maximum flow and the second parameter is the current residual
capacity information of the residual graph. The function will first call findAugmentingPath . In the case
that Nothing is returned, the go function will just return the current maximum flow. Otherwise, it will
calculate the bottleneck capacity, push the flow, and recursively call itself by go (currentFlow +
bottleneckCapacity) updatedCapacityInformation .

Dataset and Experiment Result

bottleneckCapacity :: [(Int, Int, Int)] -> Int

addFlow :: Int -> [(Int, Int, Int)] -> Map (Int, Int) Int -> Map (Int, Int) Int

fordFulkerson :: Graph -> Int -> Int -> Int

go :: Int -> Map (Int, Int) Int -> Int

of Node # of Edges Run Time Max Flow

4 5 0.05s 2000

50 612 0.13s 828

100 2475 2.41s 1251

500 62375 434.39s 7192

Dataset and Experiment Result
The dataset is obtained from this github repo. The test dataset used for the project are the graph with 4, 50,
100, 500 vertices. In each file, each line represents an edge in the graph and is given by

With the data given, the program we just implemented has the following runtime result

We can see as the number of edges and the max flow grows, the run time grows significantly.

Parallel Implementation (Future Work)
Max-flow/min-cut algorithm are very hard to parallelize since the augmented path finding step must be
independent and must search the entire graph. It may involve some graph partition technique and advanced
all-gather type parallel programming pattern. Due to limited time in the final season, I don't have much time
implement the parallel version of the Ford-Fulkerson algorithm. I might implement them in the future if time
permitting.

Guide on how to run the project
All the code are in the src/Libs.hs file. To run the project, go to the root directory and enter

Then, we can load the module by

In the interactive terminal, we can read the input from dataset by typing

and construct the graph by

<src> <dst> <capacity>

stack ghci

ghci> :l Lib

ghci> rawInput <- readLines "data/4.txt"

https://github.com/SumitPadhiyar/parallel_ford_fulkerson_gpu

and calculate the maximum flow by

Code Listing

ghci> g4 = buildGraph rawInput

ghci> fordFulkerson g4 0 3

module Lib
 (
 parseLine,
 readLines,
 buildGraph,
 findAugmentingPath,
 bottleneckCapacity,
 addFlow,
 fordFulkerson,
) where

import Data.List.Split (splitOn)
import Data.Maybe (fromJust)
import Data.Set (Set)
import Data.Map (Map)
import qualified Data.Set as Set
import qualified Data.Map as Map

import qualified Data.Sequence as Seq
import Data.Sequence ((><))

parseLine :: String -> (Int, Int, Int)
parseLine line = (read src, read dest, read weight)
 where
 [src, dest, weight] = case splitOn " " line of
 [x, y, z] -> [x, y, z]
 _ -> error "Invalid input"

readLines :: FilePath -> IO [(Int, Int, Int)]
readLines filePath = do
 fileContent <- readFile filePath
 let fileLines = lines fileContent
 return (map parseLine fileLines)

type Graph = ([Int], Map Int (Set Int), Map (Int, Int) Int)

type Graph = ([Int], Map Int (Set Int), Map (Int, Int) Int)

buildGraph :: [(Int, Int, Int)] -> Graph
buildGraph edges = (vs, es, cs)
 where
 vs = Set.toList $ Set.fromList $ concat [[s, t] | (s, t, _) <- edges]
 es = Map.fromList
 [
 (v, Set.union
 (Set.fromList [s | (s, t, _) <- edges, t == v])
 (Set.fromList [t | (s, t, _) <- edges, s == v]))
 | v <- vs
]
 cs' = foldr (\(src, dst, c) m -> Map.insert (src, dst) c m) Map.empty edges
 cs = foldr (\(src, dst, _) m -> Map.insert (dst, src) 0 m) cs' edges

findAugmentingPath :: Graph -> Int -> Int -> Maybe [(Int, Int, Int)]
findAugmentingPath (_, es, cs) s t = go (Seq.singleton s) Set.empty Map.empty
 where
 getPath v prevLookup
 | v == s = []
 | otherwise = (dst, src, wei) : getPath src prevLookup
 where (dst, src, wei) = fromJust $ Map.lookup v prevLookup
 go pathSeq visited prevLookup
 | Seq.length pathSeq == 0 = Nothing
 | v == t = Just $ getPath t prevLookup
 | Set.member v visited = go path visited prevLookup
 | otherwise =
 let
 neighbors = Seq.fromList
 $ filter (\v2 -> (Map.findWithDefault 0 (v, v2) cs) > 0 &&
 (not $ Set.member v2 visited))
 $ Set.toList $ Map.findWithDefault Set.empty v es
 prevLookup' = foldr
 (\v2 m -> Map.insert v2 (v2, v, (Map.findWithDefault 0 (v, v2)
cs)) m)
 prevLookup neighbors
 in go (path >< neighbors) (Set.insert v visited) prevLookup'
 where
 v = Seq.index pathSeq 0
 path = Seq.deleteAt 0 pathSeq

bottleneckCapacity :: [(Int, Int, Int)] -> Int
bottleneckCapacity path = minimum (map (\(_, _, c) -> c) path)

addFlow :: Int -> [(Int, Int, Int)] -> Map (Int, Int) Int -> Map (Int, Int) Int

addFlow f path cs = go path cs

addFlow f path cs = go path cs
 where
 go [] cs' = cs'
 go ((dst, src, _):path') csTemp =
 let capacity = Map.findWithDefault 0 (src, dst) csTemp
 capacity' = Map.findWithDefault 0 (dst, src) csTemp
 cs' = Map.insert (src, dst) (capacity - f) cs
 cs'' = Map.insert (dst, src) (capacity' + f) cs'
 in go path' cs''

fordFulkerson :: Graph -> Int -> Int -> Int
fordFulkerson (vs, es, cs) s t = go 0 cs
 where
 go f cs' =
 let p = findAugmentingPath (vs, es, cs') s t
 in case p of
 Nothing -> f
 Just path ->
 let c = bottleneckCapacity path
 f' = f + c
 cs'' = addFlow c path cs'
 in go f' cs''

	Function Programming Project Report
	Introduction
	Implementation
	Dataset and Experiment Result
	Parallel Implementation (Future Work)
	Guide on how to run the project
	Code Listing

