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The Algorithm
The market-basket problem is a highly researched data mining problem aimed at identifying the most popular
groups of items in a list of transactions. The support for a group of items (an itemset) is defined as the number of
transactions that contain every item in the itemset. The kinds of algorithms I’m interested in for this project try
to answer the question, “given a minimum support, what are all of the itemsets that occur in transactions at least
that many times?”. The results of such algorithms can be used directly by businesses to ascertain what products
act most like complements and indirectly to figure out how to recommend other products to a user for a given set
of items in their shopping cart.

The most naive possible solution to this problem is to iterate through each itemset in the powerset of the set of all
items, and for each itemset to search the entire transaction list. This has exponential complexity with respect to
the number of items. Thus, it is unsuitable for anything.

The most basic algorithm that improves upon this problem is the Apriori which prunes the exponential search space
using the principle of “subset-infrequency”: if an itemset is known to be infrequent, then its supersets must also be
infrequent. The strategy then becomes as follows:

freq_itemsets = []
candidates <= the set of all 1-itemsets
for i in [1..N]:
-- Pruning step.
freq_k_itemsets <= filter (\item -> support(item) <= minsupport) candidates
freq_itemsets <= freq_itemsets ++ freq_k_itemsets
candidates <= genCandidates(candidates)

where k-itemsets are itemsets with k items, K is the number of items, and N is the length of the largest transaction.

Above, genCandidates works as follows:

def genCandidates(k_itemsets):
k_plus_one_itemsets = []
for itemset in k_itemsets:
max_item <= maximum item id of k_itemsets
t <= [(max_item+1)..K]
for item in t:
append (k_plus_one_itemsets `union` {item}) to k_plus_one_itemsets

return k_plus_one_itemsets

Optimization 1: ECLAT
What’s not specified above is how we the support of an itemset. The traditional approach is to simply read through
all the transactions, counting the amount that contain all of the items in the itemset of interest. This is slow for
obvious reasons and lends us to our first optimization: rather than keeping a list of transactions containing items,
we can keep a map of items to ID’s of transactions containing those items. For example, the following simple data
would be transposed as follows:

t1: 1 2 3
t2: 2 4
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t3: 3 4
t4: 1 2 5
t5: 1 2 3 4

becomes {1: {t1, t4, t5}, 2: {t1, t2, rt, t5}, 3: {t1, t3, t5}, 4: {t2, t3, t5}, 5: {t4}}

Once we have this tidmap, we can easily find the support of any itemset by looking up the tids for each of its items,
intersecting those sets, and counting the total—that is, the number of tid’s they have in common.

Optimization 2: Max-Miner Algorithm
The Max-Miner algorithm concerns itself moreso with the way the “search tree” is arranged and which itemsets are
checked. Traditionally, the search tree looks like the image below:

(stolen from Christian Borgelt)

In the image, we can see that the leftmost nodes are responsible for the biggest “combinatorial explosions” and
have the greatest amounts of child nodes. Anything we could do to minimize the chance that the leftmost nodes
expand would greatly decrease the total amount of candidates that have to be generated. The central insight (as
far as I can tell; I only read the linked slideshow) of the Max-Miner algorithm is to order the candidate children of
each node such that the child nodes occur in order of increasing support. This means that the candidates with the
least support, which have the lowest chance of having frequent children themselves, will be less likely to contribute
to the “combinatorial explosion” effect. The linked paper provides precise terminology for these terms, so you may
wanna read that if this explanation is confusing.

Implementation-level Optimization, Parallelization, and Benchmarks
Note: While I ran this algorithm on a couple of test cases, all numbers and benchmarks reported below are based
on an evaluation of the algorithm on the file fixtures/T40l10D100K.dat (a common dataset from Oracle for
researchers to compare their work) at a minimum support level of 1% (meaning it was tasked with finding all the
itemsets that appear in at least 1 percent of transactions).

Parallelizing file reading and the TIDMap
The file reading went through many iterations (see Git log in submitted .tar.gz). The initial implementation read
the input file, broke it up into lines and words, converted the words to Ints, and then immediately returned once
it had done so. The first thing I did to improve it was switch to ByteStrings which improved the performance
significantly, though it involved writing custom conversion code from ByteString to a list of transactions. I tried
to parallelize this conversion to make sure the program was continuously reading the file in, but this was more effort
than it was worth because it led to significant garbage collection delays as the transactions were thrown out upon
conversion to the tidmap. The solution I currently have is to create mini-TIDMaps (say, representing 1000 lines
at a time) and evaluate those in parallel. These mini-TIDMaps are then combined into the full TIDMap using a
custom fold function. This improved the time the program took to go from start to TIDMap from 10 seconds (first
solution) to 3 seconds (second solution) to .7 seconds (current solution).

The below screenshots show the improvements in productivity and garbage collection when we go from line-by-line
to batch processing/transposing of data.
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Parallelizing the search
Rather than the iterative algorithm given above, I used an explicit search tree (called ITree in the code)
which allowed easy parallelization because I was able to decouple the search from the evaluation using
Control.Parallel.Strategies. Basically, for each node in the tree, I chunked up the evaluation of its children
and evaluated the chunks in parallel. This code parallelized super well, yielding productivities of about 95%
according to Threadscope.

Implementing Max-Miner
On my 4-core 8-thread laptop, rearranging the order of child evaluation improved the overall runtime from 70
seconds to about 7. I also found that the change made the spark execution times far more regular, so far fewer
cores waited around at the end of the evaluation waiting for the rest to finish.

The below screenshots show how fickle spark distribution was before the Max-Miner algorithm (minor fiddling with
chunking parameters had wildly varying effects).
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The screenshot below shows the speedup and improvement to the algorithm thanks to the Max-Miner algorithm.
It represents the final version of the code submitted.
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Benchmarking

The algorithm scales really good. I didn’t compare my implementation of ECLAT to Christian Borgelt’s due to (1)
time constraints and (2) I already know from previous experience that his implementation is at least an order of
magnitude faster, as there’s no chance my beginner’s Haskell can compare to his hand-tuned C.

Code Listings
The code is set up as a cabal app.

haskell-market-basket.cabal
I’ve cut out useless comments in this file.

cabal-version: 2.4
name: haskell-market-basket
version: 0.1.0.0

executable haskell-market-basket
main-is: Main.hs
other-modules: Utils, MoodyIntSet

-- LANGUAGE extensions used by modules in this package.
-- other-extensions:
build-depends: base >=4.14.3.0,

containers >= 0.6,
deepseq >= 1.4,
parallel >= 3.0,
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bytestring >= 0.11,
monad-loops >= 0.4,

hs-source-dirs: app
default-language: Haskell2010
ghc-options: -Wall -rtsopts=all -threaded -eventlog

app/Main.hs
module Main where

import Utils -- Factored out general(ish) functions for safekeeping.

import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as BC
import qualified Text.Read as Read
import qualified System.Exit as Exit
import qualified System.IO as IO
import qualified System.Environment as Environment
import qualified Data.IntMap as IntMap
import qualified Data.IntSet as IntSet
import qualified Data.Tree as Tree
import Control.Parallel.Strategies
import Control.Monad.Loops (whileM)
import Data.Foldable (foldl')
import Data.List (sortOn)

--
-- Core algorithm logic below.
--

type TIDMap = IntMap.IntMap IntSet.IntSet
type ITree = Tree.Tree Int

-- Terminology below comes from max-miner paper, except for "getOrders", which stands for
-- "the set of transactions containing the itemset represented by this node."
data ISeed = ISeed { getLastItemInHead :: !Int,

getTail :: ![Int],
getOrders :: !IntSet.IntSet }

deriving (Show, Eq)

genPruneCands :: Int -> TIDMap -> ISeed -> [(Int, IntSet.IntSet)]
genPruneCands minSup tidMap (ISeed _ unChildren orders) =

[ (candidate, candidateOrders)
| candidate <- unChildren -- Generate candidates
, let candidateOrders = IntSet.intersection orders (tidMap IntMap.! candidate)
, minSup <= IntSet.size candidateOrders -- Pruning step
]

bootstrapGenPruneCands :: Int -> TIDMap -> [(Int, IntSet.IntSet)]
bootstrapGenPruneCands minSup = filter ((>=minSup) . IntSet.size . snd) . IntMap.toAscList

maxMinerCandReorder :: [(Int, IntSet.IntSet)] -> [(Int, IntSet.IntSet)]
maxMinerCandReorder = sortOn (IntSet.size . snd)

packCands :: [(Int, IntSet.IntSet)] -> [ISeed]
packCands candidates = let (items, orders) = unzip candidates
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in zipWith packSeed (headAndTails items) orders
where packSeed (item, uncheckedItems) order = ISeed item uncheckedItems order

-- This function gives an expression (search tree) for frequent itemsets.
getFreqForest :: Int -> TIDMap -> [ITree]
getFreqForest minSup tidMap = Tree.unfoldForest blowup oneSeeds

where
candGenPruner = genPruneCands minSup tidMap
oneSeeds :: [ISeed] -- One-itemsets are the base-case for search.
oneSeeds = packCands $ maxMinerCandReorder $ bootstrapGenPruneCands minSup tidMap

blowup :: ISeed -> (Int, [ISeed])
blowup seed = (getLastItemInHead seed,

(packCands . maxMinerCandReorder . candGenPruner) seed)

-- Decouple parallelization strategy from evaluation, as advised in class.
aprioriStrategy :: Strategy [ITree]
aprioriStrategy = parList stratITree

where
stratITree :: Strategy ITree
stratITree (Tree.Node rLabel children) = do
children' <- parListChunk 10 rdeepseq children
return $ Tree.Node rLabel children'

-- This is a debug function that, inefficiently,
-- takes all the paths from root to leaf in the search tree
-- and filters out non-maximal itemsets. For example,
-- the itemset pair [1,2,3] and [1,3] are not maximal.
-- A maximal set of itemsets has the property that no itemset
-- is a subset of the others.
toMaximalItemsets :: [[Int]] -> [IntSet.IntSet]
toMaximalItemsets itemsets = foldl' prependIfNew [] itemsets'

where
itemsets' = sortSizeThenVal $ fmap IntSet.fromList itemsets
sortSizeThenVal = sortOn (\set -> (-(IntSet.size set), set))
prependIfNew maximals unseenISet | unseenISet `isRedundant` maximals = maximals
prependIfNew maximals unseenISet = unseenISet : maximals
iSet `isRedundant` iSets = any (IntSet.isSubsetOf iSet) iSets

--
-- The code below provides functions for reading in a list of transactions
-- from some file and converting them into a map from items
-- to the transactions containing that item.
--

-- Transactions read in in chunks and converted into mini-TIDMaps,
-- which are then finally combined with mergeTIDMaps
mergeTIDMaps :: [TIDMap] -> TIDMap
mergeTIDMaps = nAryFold n (IntMap.unionsWith IntSet.union)

where n=50

-- This takes a list of (transaction ID, transaction) pairs and
-- pivots it into a map from transaction ID's to orders.
-- Each transaction must have distinct items in ascending order.
transposeOrders :: [(Int, [Int])] -> TIDMap
transposeOrders = IntMap.unionsWith IntSet.union . map transposeRow
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where
transposeRow :: (Int, [Int]) -> TIDMap
transposeRow (tid, order) = IntMap.fromDistinctAscList [(itm, IntSet.singleton tid) | itm <- order]

-- Extracts integers from a lines of a transaction file.
mkOrder :: B.ByteString -> Maybe [Int]
mkOrder = sequence . getInts

where
getInts :: B.ByteString -> [Maybe Int]
getInts b | B.null b = []
getInts b | B.head b == 32 = getInts $ B.tail b -- ' ' == 32
getInts b = case BC.readInt b of
Just (i, remainder) -> Just i : getInts remainder
Nothing -> [Nothing]

-- Reads orders from the file.
readTIDMapFromFile :: String -> IO (Either String (TIDMap, Int))
readTIDMapFromFile filename = IO.withFile filename IO.ReadMode (\handle -> do

inputLines <- whileM (not <$> IO.hIsEOF handle) (B.hGetLine handle) :: IO [B.ByteString]
let mOrders = map mkOrder inputLines :: [Maybe [Int]]
let mTIDOrderPairs = zipWith (fmap . (,)) [1..] mOrders :: [Maybe (Int, [Int])]
-- These are the mini-TIDMaps
let tidmaps = withParStrat $ map (fmap transposeOrders . sequence) $ chunksOf n mTIDOrderPairs
let mTIDMap = mergeTIDMaps <$> sequence tidmaps :: Maybe TIDMap
case mTIDMap of
Just tidmap -> return $ Right (tidmap, length inputLines)
Nothing -> return (Left err)

)
where
n = 1000
withParStrat = withStrategy $ parList rdeepseq
err = "Error: '" ++ filename ++ "' incorrectly formatted.\

\ It should contain newline-separated transactions,\
\ Items in the transaction must be in ascending order."

--
-- Code below is the main function and supporting characters.
--

data NumericArg = ArgPercentage !Rational | ArgRawCount !Int

-- Tries to read the minimum support as a count or as a percentage of transactions.
readMinSup :: String -> Either String NumericArg
readMinSup arg = case Read.readMaybe arg of
(Just count) | count < 0 -> Left "Error: minSup must be nonnegative!"
(Just count) -> Right $ ArgRawCount count
Nothing -> case (Read.readMaybe arg :: Maybe Double) of
(Just frac) | frac < 0 -> Left "Error: minSup must be nonnegative!"
(Just frac) | frac > 1 -> Left "Error: minSup must be less than one if decimal!"
(Just frac) -> Right $ ArgPercentage $ toRational frac
Nothing -> Left "Error: Unable to interpret minSup as integer or double."

minSupCountFromArg :: NumericArg -> Int -> Int
minSupCountFromArg (ArgRawCount count) _ = count
minSupCountFromArg (ArgPercentage frac) nOrders = floor $ frac * toRational nOrders
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main :: IO ()
main = do
args <- Environment.getArgs
case args of

[filename, minSupArg] -> do
eitherErrorOrders <- readTIDMapFromFile filename
let eitherErrorMinSup = readMinSup minSupArg

case (,) <$> eitherErrorMinSup <*> eitherErrorOrders of
Left err -> do
putStrLn err
Exit.exitWith (Exit.ExitFailure 1)

Right (sup, (tidmap, nOrders)) -> do
putStrLn "got tidmap!"
let minSupCount = minSupCountFromArg sup nOrders
putStr "Minimum support: "
print minSupCount
putStrLn "The paths to leaves are:"
let fForest = withStrategy aprioriStrategy $ getFreqForest minSupCount tidmap
mapM_ print $ getPathsToLeaves fForest
-- fmap IntSet.toList $ reverse $ toMaximalItemsets $ getPathsToLeaves fForest

_usage -> do
progName <- Environment.getProgName
putStrLn $ "Usage: " ++ progName ++ " <filename> <minimum support [0,1]>"
putStrLn " Note that the input file format is not checked."
putStrLn " It should contain newline-separated transactions,"
putStrLn " Items in the transaction must be in ascending order."
Exit.exitWith (Exit.ExitFailure 1)

app/Utils.hs
module Utils where

import Control.Parallel.Strategies (NFData, parMap, rdeepseq)
import Data.List (sort)
import qualified Data.Tree as Tree

getPathsToLeaves :: [Tree.Tree a] -> [[a]]
getPathsToLeaves = concatMap (Tree.foldTree f)

where
f x [] = [[x]]
f x paths = (x:) <$> concat paths

sort2dList :: Ord a => [[a]] -> [[a]]
sort2dList = sort . map sort

-- A bit obvious, but it parallelizes, so choose a good N!
-- Example:
-- > > data Node = D [Node] | S Int
-- > > nAryFold 2 D (S 0) (map S [1..4])
-- > D [D [D [S 1,S 2],D [S 3,S 4]],S 0]
nAryFold :: (NFData a) => Int -> ([a] -> a) -> [a] -> a
nAryFold _ f [] = f []
nAryFold _ f [x] = f [x]
nAryFold n f xs = nAryFold n f foldedChunks
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where foldedChunks = rdeepseq `parMap` f $ chunksOf n xs

chunksOf :: Int -> [a] -> [[a]]
chunksOf _ [] = []
chunksOf n xs = let (g1, gs) = splitAt n xs in g1 : chunksOf n gs

-- > > headAndTails [1,2,3,4,5]
-- > [(1,[2,3,4,5]),(2,[3,4,5]),(3,[4,5]),(4,[5]),(5,[])]
headAndTails :: [a] -> [(a, [a])]
headAndTails [] = []
headAndTails (x : xs) = (x, xs) : headAndTails xs

--
-- THE FUNCTIONS BELOW THIS LINE ARE LEFT FOR POSTERITY AND AREN'T USED
--

maybeToEither :: b -> Maybe a -> Either b a
maybeToEither _ (Just x) = Right x
maybeToEither left Nothing = Left left

-- Nothing ever changes
fib :: Integral a => [a]
fib = nextFib 1 1 where nextFib a b = a : nextFib b (a + b)

-- > > growingChunks 5 [1..30]
-- > [[1],[2],[3,4],[5,6,7],[8..12],[13..17],[18..22],[23..27],[28,29,30]]
growingChunks:: Int -> [a] -> [[a]]
growingChunks maxChunkSize = chunker splitters

where
splitters = splitAt <$> takeWhile (<maxChunkSize) fib
chunker _ [] = []
chunker [] as = chunksOf maxChunkSize as
chunker (splitter: remSplitters) as =

let (chunk, remAs) = splitter as in chunk : chunker remSplitters remAs

app/MoodyIntSet.hs
module MoodyIntSet where

-- I wrote this module to see if a flat set implemented as
-- a simple ascending list would be faster than IntSet.
-- It was so slow in the "sparse" mode that I ended up not finishing it.
-- The idea _was_ to have a "Sparse" and "Dense" mode,
-- so that unions could be done with lists,
-- and that intersections could be done with packed Ints (Data.Vector).

import qualified Data.Foldable as Foldable
import Control.DeepSeq (NFData, rnf)
-- import qualified Data.Vector as V

data MoodyIntSet = Sparse { size :: !Int, toList :: ![Int] }

-- | Packed !(V.Vector Int)

instance NFData MoodyIntSet where
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rnf (Sparse siz list) = siz `seq` rnf list

instance Show MoodyIntSet where
show (Sparse _ s) = show s

instance Eq MoodyIntSet where
(Sparse size1 list1) == (Sparse size2 list2) =
(size1==size2) || (list1==list2)

empty :: MoodyIntSet
empty = Sparse 0 []

singleton :: Int -> MoodyIntSet
singleton x = Sparse 1 [x]

-- Precondition not checked.
fromDistinctAscList :: [Int] -> MoodyIntSet
fromDistinctAscList xs = Sparse (length xs) xs

union :: MoodyIntSet -> MoodyIntSet -> MoodyIntSet
union (Sparse _ s1) (Sparse _ s2) = let (s, u) = union' 0 s1 s2 in Sparse s u

where
union' s as@(a1:tailAs) bs@(b1:tailBs) = case a1 `compare` b1 of
LT -> let (s', u') = union' s tailAs bs in (s' + 1, a1:u')
GT -> let (s', u') = union' s as tailBs in (s' + 1, b1:u')
EQ -> let (s', u') = union' s tailAs tailBs in (s' + 1, a1:u')

union' s as [] = (s + length as, as)
union' s [] bs = (s + length bs, bs)

unions :: Foldable f => f MoodyIntSet -> MoodyIntSet
unions = Foldable.foldl' union empty

intersection :: MoodyIntSet -> MoodyIntSet -> MoodyIntSet
intersection (Sparse _ s1) (Sparse _ s2) = let (s, int) = intersect' (0::Int) s1 s2

in Sparse s int
where
intersect' s as@(a1:tailAs) bs@(b1:tailBs) = case a1 `compare` b1 of
LT -> let (s', int') = intersect' s tailAs bs in (s', int')
GT -> let (s', int') = intersect' s as tailBs in (s', int')
EQ -> let (s', int') = intersect' s tailAs tailBs in (s', a1:int')

intersect' _ _ _ = (0, []) -- If either is empty, intersection is empty.
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