
Haskell Basics

Stephen A. Edwards

Columbia University

Fall 2022

Arithmetic and Booleans

Function Application and Binary Operators

Defining functions: Let and Layout

Lists and List Comprehensions

Tuples

Useful Websites

Ï https://www.haskell.org/

Downloads, documentation

E.g., the Haskell Wiki, the GHC User’s Guide, The Haskell 2010 language
report, Hackage (package library), Hoogle (Haskell API search)

Ï http://docs.haskellstack.org

The Haskell Tool Stack: a powerful system for downloading and installing
packages, etc.

We will be using the Haskell Stack to make sure everybody’s environment
is consistent.

https://www.haskell.org/
http://docs.haskellstack.org

GHCi

GHC is the Glasgow Haskell Compiler (the major Haskell compiler release)

GHCi is the REPL (Read-Eval-Print Loop, a.k.a., command-line interface)

Run ghci with stack:

$ stack ghci
Configuring GHCi with the following packages:
GHCi, version 8.10.6: http://www.haskell.org/ghc/ :? for help
Loaded GHCi configuration from /tmp/haskell-stack-ghci/2a3bbd58/..
Prelude> :?

 Commands available from the prompt:

 <statement> evaluate/run <statement>
 :quit exit GHCi

The material on the following slides is adapted from

Miran Lipovača.
Learn You a Haskell for Great Good!
No Starch Press, 2001.

http://learnyouahaskell.com/

http://learnyouahaskell.com/

Comments

Single-line comments start with two dashes: --

Prelude> -- Single-line comment

Multi-line comments start with {-, end with -}, and may nest.

In GHCi only, multi-line definitions, etc.
may be written with :{ and :}; these are
unnecessary in source (.hs) files.
Prelude> :{
Prelude| {- This is a
Prelude| multi-line comment -}
Prelude| :}

Alternately enable multi-line input
mode in GHCi:
Prelude> :set +m
Prelude> {-
Prelude| A multi-line
Prelude| Comment
Prelude| -}
Prelude> {- Another
Prelude| one -}

Basic Arithmetic
Prelude> 2 + 15
17
Prelude> 42 - 10
32
Prelude> 1 + 2 * 3
7
Prelude> 5 / 2
2.5
Prelude> 3 + -2

<interactive>:4:1: error:
 Precedence parsing error
 cannot mix '+' [infixl 6] and prefix '-' [infixl 6] in the same
 infix expression
Prelude> 3 + (-2)
1

Booleans and Equality
Haskell is case-sensitive
Prelude> True && False
False
Prelude> False || True
True
Prelude> not True || True
True
Prelude> not (True || True)
False

Prelude> 5 == 5
True
Prelude> 5 == 0
False
Prelude> 5 /= 5
False
Prelude> 5 /= 0
True
Prelude> "hello" == "hello"
True

Prelude> "llama" == 5
<interactive>:25:12: error:

 * No instance for (Num [Char]) arising from the literal '5'
 * In the second argument of '(==)', namely '5'
 In the expression: "llama" == 5
 In an equation for 'it': it = "llama" == 5

Function Application

Juxtaposition indicates function application. Don’t use parentheses or
commas for arguments.

Prelude> succ 41
42
Prelude> min 42 17
17
Prelude> max 42 17
42

Juxtaposition binds tightly; use parentheses to group arguments

Prelude> succ 3 * 2
8
Prelude> succ (3 * 2)
7

Backticks and parentheses

Backticks make a function an infix operator. This is sometimes a more natural
way to write expressions.

Prelude> 5 ̀ max` 3
5
Prelude> 5 ̀ max` 8
8

Parentheses around a binary operator turns it into a two-argument function.
This is most useful when you want to pass it as an argument (later).

Prelude> (+) 17 25
42

User-Defined Names and Functions

Equals = binds expressions to names

Prelude> x = 7
Prelude> x * x
49

Just add one or more arguments to define a function

Prelude> sqr x = x * x
Prelude> sqr 7
49
Prelude> y = 8
Prelude> sqr y
64

Defining Functions

You can similarly define a function in a source file:

sqr.hs: sqr x = x * x

In GHCi, :l means “load”

Prelude> :l sqr
[1 of 1] Compiling Main (sqr.hs, interpreted)
Ok, one module loaded.

*Main> sqr 7
49

Let Bindings: Naming Things In an Expression

let <bindings> in <expression>

cylinder r h = let sideArea = 2 * pi * r * h
 topArea = pi * r^2
 in sideArea + 2 * topArea

This example can be written “more mathematically” with where

cylinder r h = sideArea + 2 * topArea
 where sideArea = 2 * pi * r * h
 topArea = pi * r^2

Semantically equivalent; let...in is an expression; where only comes after
bindings. Only where works across guards.

let...in Is an Expression and More Local

A contrived example:

f a = a + let a = 3 in a

This is the “add 3” function. The scope of a = 3 is limited to the let...in

let bindings are recursive. E.g.,

let a = a + 1 in a

does not terminate because all the a’s refer to the same thing: a + 1

This is mostly used for defining recursive functions, but it can also be used to
define infinite data structures. More on that later.

Haskell Layout Syntax

Internally, the Haskell compiler intreprets

a = b + c
 where
 b = 3
 c = 2

as

a = b + c where { b = 3 ; c = 2 }

The only effect of layout is to insert { ; } tokens.

Manually inserting { ; } overrides the layout rules

Haskell Layout Syntax

Ï Layout blocks begin after let, where, do, and of unless there’s a {

Ï The first token after the keyword sets the indentation of the block
Ï Every following line at that indentation gets a leading ;

Ï Every line indented more is part of the previous line
Ï The block ends (an implicit }) when anything is indented less

a = b + c where
 b = 2
 c = 3

a = b + c
 where b = 3
 + 2
 c = 3

a = b + c where b = 2
 c = 3

a = b + c
 where b = 3
 + 2 −− No
 c = 3

a = b + c
 where b = 2
 c = 3

a = b + c
 where b = 2
 c = 3 −− No

Lists: Homogeneous Sequences

Square brackets and commas denote list literals

Prelude> fiveprimes = [2,3,5,7,11]
Prelude> fiveprimes
[2,3,5,7,11]

Strings are just lists of characters

Prelude> ['h','e','l','l','o']
"hello"

++ performs list concatenation

Prelude> [1,2,3] ++ [4,5]
[1,2,3,4,5]
Prelude> ['h','e','l','l','o'] ++ " world"
"hello world"

The Cons Operator : Prepends a List Element
The bracket notation is just syntactic sugar for Cons.

Prelude> 1 : [2,3,4]
[1,2,3,4]
Prelude> 1 : 2 : [3,4]
[1,2,3,4]
Prelude> 1 : 2 : 3 : 4 : []
[1,2,3,4]

List elements must all be the same type

Prelude> 1 : ['h','e']
<interactive>:10:1: error:

 * No instance for (Num Char) arising from the literal '1'
 * In the first argument of '(:)', namely '1'
 In the expression: 1 : ['h', 'e']
 In an equation for 'it': it = 1 : ['h', 'e']

From Learn You a Haskell for Great Good!

Prelude> x = [0,1,2,3,4]
Prelude> head x
0
Prelude> tail x
[1,2,3,4]
Prelude> last x
4
Prelude> length x
5
Prelude> init x
[0,1,2,3]
Prelude> reverse x
[4,3,2,1,0]
Prelude> null x
False
Prelude> null []
True

Prelude> [5,6,7] !! 2
7
Prelude> "Monty Python" !! 6
'P'
Prelude> take 3 x
[0,1,2]
Prelude> drop 2 x
[2,3,4]
Prelude> maximum x
4
Prelude> minimum x
0
Prelude> sum x
10
Prelude> product x
0

Don’t use head, tail, or !!; there are
almost always better alternatives

List Ranges

Prelude> [1..20]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Prelude> [2,4..20]
[2,4,6,8,10,12,14,16,18,20]
Prelude> [20,19..1]
[20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
Prelude> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"

Linear sequences only

Floating point numbers problematic

Infinite Lists
Haskell supports infinite lists (and other infinite data structures).
Hint: don’t print out the whole thing. E.g., use take to see the first elements

Prelude> take 5 [1..]
[1,2,3,4,5]
Prelude> take 10 [1..]
[1,2,3,4,5,6,7,8,9,10]
Prelude> take 10 [1,2,3]
[1,2,3]
Prelude> take 10 (cycle [1,2,3])
[1,2,3,1,2,3,1,2,3,1]
Prelude> take 16 (cycle [1,2,3])
[1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1]
Prelude> take 17 (repeat 5)
[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
Prelude> replicate 15 6
[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6]

List Comprehensions

[expression | generator-guard-let, generator-guard-let, . . .]

Prelude> [x^2 | x <- [1..19]]
[1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361]

Prelude> [x^2 | x <- [1..20], (x^2) ̀ mod` 2 == 0]
[4,16,36,64,100,144,196,256,324,400]

Prelude> [x^2 | x <- [1..20], even (x^2)]
[4,16,36,64,100,144,196,256,324,400]

Prelude> [y | x <- [1..20], let y = x^2, even y]
[4,16,36,64,100,144,196,256,324,400]

List Comprehensions

Multiple guards must all be true

Prelude> [x | x <- [1..100], x ̀ mod` 7 == 0]
[7,14,21,28,35,42,49,56,63,70,77,84,91,98]

Prelude> [x | x <- [1..100], x ̀ mod` 7 == 0, x ̀ mod` 5 == 0]
[35,70]

Multiple generators apply right-to-left:

Prelude> [x + y | x <- [100,200..400], y <- [0..3]]
[100,101,102,103,200,201,202,203,300,301,302,303,400,401,402,403]

Application: CS Research Jargon Generator

Prelude> :set +m
Prelude> [adjective ++ " " ++ noun |
Prelude| adjective <- ["An integrated","A type-safe"],
Prelude| noun <- ["network","architecture","hypervisor"]]
["An integrated network","An integrated architecture",

 "An integrated hypervisor","A type-safe network",
 "A type-safe architecture","A type-safe hypervisor"]

https://www.cs.purdue.edu/homes/dec/essay.topic.generator.html

https://www.cs.purdue.edu/homes/dec/essay.topic.generator.html

List Comprehensions
Here’s an awkward way to code the standard Prelude’s length function:

Prelude> length' xs = sum [1 | _ <- xs]
Prelude> length' [5,6,2,1,0]
5
Prelude> length' (replicate 11 []) -- List of eleven empty lists
11

Names (variable identifiers) start with a lowercase letter followed by zero or
more letters, digits, underscores, and single quotes.

_ alone means “don’t give this a name”

Prelude> onlyLetters s = [c | c <- s,
Prelude| c ̀ elem` ['A'..'Z'] ++ ['a'..'z']]
Prelude> onlyLetters "Does this do what I think it 5hould?"
"DoesthisdowhatIthinkithould"

Tuples: Pairs and More of Heterogeneous Objects

Lists are zero or more things of the same type; a tuple is two or more of
(potentially) different types.

Prelude> (5,10)
(5,10)
Prelude> ("a",15)
("a",15)
Prelude> ("Douglas","Adams",42)
("Douglas","Adams",42)
Prelude> sae = ("Stephen", "Edwards")
Prelude> fst sae
"Stephen"
Prelude> snd sae
"Edwards"

Zip and Pythagorean Triples

Form a list of pairs from two lists. Shorter of the two lists dominates;
convenient with infinite lists

Prelude> zip [1,2,3] [100,200,300]
[(1,100),(2,200),(3,300)]

Prelude> zip "Stephen" [1..]
[('S',1),('t',2),('e',3),('p',4),('h',5),('e',6),('n',7)]

Prelude> [(a,b,c) | c <- [1..20], b <- [1..c], a <- [1..b],
Prelude| a^2 + b^2 == c^2]
[(3,4,5),(6,8,10),(5,12,13),(9,12,15),(8,15,17),(12,16,20)]

The Handshake Problem

Number of handshakes among a group of n friends?

Prelude> handshakes n = [(a,b) | a <- [1..n-1], b <- [a+1..n]]
Prelude> handshakes 3
[(1,2),(1,3),(2,3)]
Prelude> handshakes 5
[(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)]
Prelude> length (handshakes 5)
10
Prelude> [length (handshakes n) | n <- [1..10]]
[0,1,3,6,10,15,21,28,36,45]
Prelude> [n * (n-1) ̀ div` 2 | n <- [1..10]]
[0,1,3,6,10,15,21,28,36,45]

Let Can Also Be Used in List Comprehensions

Prelude> handshakes n = [handshake | a <- [1..n-1], b <- [a+1..n],
Prelude| let handshake = (a,b)]
Prelude> handshakes 3
[(1,2),(1,3),(2,3)]

Its scope includes everything after the let and the result expression

	Arithmetic and Booleans
	Function Application and Binary Operators
	Defining functions: Let and Layout
	Lists and List Comprehensions
	Tuples

