
Pac-Man
Leo Qiao, Jerry Lin



Background

● Popular game developed in the 1980s by 
Toru Iwatani

● Maze-based game: Eat food pellets for points 
and avoid contact with four ghosts

● Goal: Implement single level clone of 
Pac-Man 



System Architecture



Hardware: Overview

● Sprite and tile graphics based off of the TMS9918 graphics 
processor

● Generalizable design: Support for arbitrary graphics/games 
depending on SW

● All tables byte addressable: 1 byte per row
● 4 bit color code with color LUT
● 8 x 8 pixel patterns, 16 x 16 pixel sprites
● Top-level priority multiplexer handles collision



Hardware: Tiles

● Tiles used for maze wall, food pellets, and text
● Pattern Generator Table stores unique patterns

○ 32 rows/pattern, 2048 rows for 64 patterns

● Pattern Name Table stores base addresses of 
patterns for each tile

○ 5 LSBs of address dropped to fit in 1 byte
○ 4096 rows for 64 x 64 tiles



Hardware: Sprites

● Sprites used for Pac-Man and ghosts
● Sprite Generator Table stores unique sprites

○ 128 rows/sprite, 2048 rows total for 16 sprites

● Sprite Attribute Table stores addresses and 
location of each sprite to be displayed

○ 1 byte vertical position
○ 1 byte horizontal position
○ 1 byte sprite base address
○ 32 rows total for 8 simultaneous sprites



Hardware: Display

● Pattern and sprite processing occurs during VGA horizontal sync
● Pattern has one FSM, each sprite has their own FSM

○ Sprite memory accesses are non-overlapping
● Sprite pixel rows loaded into shift register: use horizontal position as 

down counter
● Entire pattern row loaded into shift register
● Shift register output fed into color LUT to obtain 24 bit RGB value
● Sprites have priority over patterns



HW/SW Interface

● 32 bit data packet from software:
○ Bits 0-1: Selects one of four tables
○ Bits 2-17: Address in selected table to write to
○ Bits 24-31: Data to write to table at specified address



Driver: Kernel Module

- Transform from struct to 32-bit HW command
- 3-field struct:



Driver: User Space

- Helper functions:
- void set_sprite_bitmap(int i, const uint8_t *pat)
- void set_sprite(sprite_attr_t attr)
- void set_pattern_bitmap(int pati, const uint8_t *pat)
- void set_pattern_at(uint8_t r, uint8_t c, uint8_t name)



Driver: Drawing 
Patterns & Sprites

- Color macros
- Draw bitmaps with 2d-arrays
- Load as a list
- Enums -> entry number in the 

generator table



Software: Peripheral

- Gamepad
- libusb-1.0
- Event listeners

- Key-up and key-down events
- Fires for each individual event and individual button



Software: Game Loop

- 3 stages
- STAGE_MENU
- STAGE_IN_GAME
- STAGE_END_GAME

- usleep(1000)
- Timers to give varying rates



Software: Pacman Movement



Software: Ghosts Movement

- Modes:
- trapped: up & down in middle cell
- release: 2-phase move to designated start point
- random: at each point, pick a random direction (but never backward)
- chase:

- run BFS for each direction, record depths of finding pacman
- pick the direction with lowest depth

- scatter
- run BFS for each direction, record depths of finding pacman
- pick the direction with highest depth



Screenshot of finished game here



Challenges, Lessons Learned

- Debugging hardware requires alternate workflows (e.g. ModelSim RTL 
simulation)

- Clocking and managing memory accesses
- Software/Hardware integration and troubleshooting
- Nice to have HW/SW interface early
- So many variables in game development…

- Abstractions are important
- Understand why OOP is popular among game devs now



Demo


