Pac-Man

Leo Qiao, Jerry Lin

Background

e Popular game developed in the 1980s by
Toru Iwatani

e Maze-based game: Eat food pellets for points :
and avoid contact with four ghosts .E‘

e Goal: Implement single level clone of :
Pac-Man

READY”

System Architecture

Hardware FPGA

Byte-addressable
VRAM

Pattern + Sprite

Pattern Name Table 1 Registers

Software
/ \ Pattern Generator
Table
Game Logic
Address Color-Priority-
+ Data Multiplexer and
User Input lib-usb1.0 Driver »| Pattern Color Table —— Collision Detect
Graphics Sprite Attribute Table
A4
Sprite Generator :
Table VGA Logic
Y A
(USB) VGA Monitor

Game Controller

Hardware Peripherals

Hardware: Overview

e Sprite and tile graphics based off of the TMS9918 graphics
processor

e Generalizable design: Support for arbitrary graphics/games

depending on SW

All tables byte addressable: 1 byte per row

4 bit color code with color LUT

8 x 8 pixel patterns, 16 x 16 pixel sprites

Top-level priority multiplexer handles collision

Hardware: Tiles

Tiles used for maze wall, food pellets, and text
Pattern Generator Table stores unique patterns

(@)

Pattern Name Table stores base addresses of

32 rows/pattern, 2048 rows for 64 patterns

patterns for each tile

(@)

(@)

5 LSBs of address dropped to fit in 1 byte
4096 rows for 64 x 64 tiles

Row @: |Pixel 1 | Pixel 2| (1st pixel row)
Row 1: |Pixel 3 | Pixel 4| (1st pixel row)
Row 2: |Pixel 5 | Pixel 6| (1lst pixel row)
Row 3: |Pixel 7 | Pixel 8| (1st pixel row)
Row 4: |Pixel 1 | Pixel 2| (2nd pixel row)
Row 5: |Pixel 3 | Pixel 4| (2nd pixel row)
Row 6: |Pixel 5 | Pixel 6| (2nd pixel row)
Row 7: |Pixel 7 | Pixel 8| (2nd pixel row)

Row 32: |Pixel 1 | Pixel 2| (2nd pattern,
Row 33: |Pixel 3 | Pixel 4| (2nd pattern,

xPATTERN NAME TABLE*****
Row @: Address of 1st tile
Row 1: Address of 2nd tile

Row N: Address of Nth tile

1st pixel row)
1st pixel row)

Hardware: Sprites

e Sprites used for Pac-Man and ghosts

e Sprite Generator Table stores unique sprites
o 128 rows/sprite, 2048 rows total for 16 sprites

e Sprite Attribute Table stores addresses and

location of each sprite to be displayed
o 1 byte vertical position
o 1 byte horizontal position
o 1 byte sprite base address
o 32 rows total for 8 simultaneous sprites

*x*xx*xSPRITE GENERATOR TABLE****
Row @: |Pixel 1 | Pixel 2| (1st pixel row)
Row 1: |Pixel 3 | Pixel 4| (1st pixel row)

Row 7: |Pixel 15 | Pixel 16| (1st pixel row)
Row 8: |Pixel 1 | Pixel 2| (2nd pixel row)
Row 9: |Pixel 3 | Pixel 4| (2nd pixel row)

Row 15: |Pixel 15 | Pixel 16| (2nd pixel row)

Row 128: |Pixel 1 | Pixel 2| (2nd sprite, 1st pixel row)
Row 129: |Pixel 3 | Pixel 4| (2nd sprite, 1st pixel row)

xSPRITE ATTRIBUTE TABLEX***x

Row ©: Vertical Position (sprite 1)

Row 1: Horizontal Position (sprite 1)

Row 2: Sprite 1 Address in generator table
Row 3: Unused

Row 4: Vertical Position (sprite 2)

Row 5: Horizontal Position (sprite 2)

Row 6: Sprite 2 Address in generator table

Row 7: Unused

Hardware: Display

e Pattern and sprite processing occurs during VGA horizontal sync

e Pattern has one FSM, each sprite has their own FSM
o Sprite memory accesses are non-overlapping

e Sprite pixel rows loaded into shift register: use horizontal position as
down counter

e Entire pattern row loaded into shift register

e Shift register output fed into color LUT to obtain 24 bit RGB value

e Sprites have priority over patterns

HW/SW Interface

e 32 bit data packet from software:
o Bits 0-1: Selects one of four tables
o Bits 2-17: Address in selected table to write to
o Bits 24-31: Data to write to table at specified address

Driver: Kernel Module

Transform from struct to 32-bit HW command

3-field struct:

u8 table;
ulé addr;
u8 data;

Driver: User Space

- Helper functions:

void set_sprite_bitmap(int i, const uint8_t *pat)

- void set_sprite(sprite_attr _t attr)

- void set_pattern_bitmap(int pati, const uint8_t *pat)

- void set_pattern_at(uint8 tr, uint8 t c, uint8_t name)

Driver: Drawing
Patterns & Sprites

- Color macros

- Draw bitmaps with 2d-arrays

- Load as a list

- Enums -> entry number in the
generator table

typedef enum {

SPRITE_PACMAN_CLOSED = 0,
SPRITE_PACMAN_LEFT,
SPRITE_PACMAN_RIGHT,
SPRITE_PACMAN_UP,
SPRITE_PACMAN_DOWN,
SPRITE_GHOST_RED,
SPRITE_GHOST_CYAN,
SPRITE_GHOST_PINK,
SPRITE_GHOST_ORANGE,
SPRITE_GHOST_SCATTER,

} sprite_name_t;

const uint8_t *sprites[] = {

(uint8_t *)sprite_pacman_closed,

(uint8_t *)sprite_pacman_right,
(uint8_t x)sprite_pacman_down,
(uint8_t x)sprite_ghost_cyan,

(uint8_t *)sprite_ghost_orange,

const uint8_t sprite_ghost_red [SPRITE_BITMAP_NROW] [SPRITE_BITMAP_NCOL] = {

{Transp, Transp,
Transp, Transp,
{Transp, Transp,
Transp, Transp,
{Transp, Transp,
Transp, Transp,
{Transp, Transp,
Transp, Transp,
{Transp, Transp,
Transp, Transp},
{Transp, Transp,
Red, Red, Transp
{Transp, Red, Red
White, White, Re
{Transp, Red, Red
White, White, Re
{Transp, Red, Red
White, Red, Red,
{Transp, Red, Red

Transp, Transp, Transp, Transp, Transp, Transp, Transp,
Transp, Transp, Transp, Transp, Transp},

Transp, Transp, Transp, Transp, Red, Red, Red, Red, Transp,
Transp, Transp, Transp},

Transp, Transp, Red, Red, Red, Red, Red, Red, Red, Red,
Transp, Transp},

Transp, Red, Red, Red, Red, Red, Red, Red, Red, Red, Red,
Transp},

Red, Red, Red, Red, Red, Red, Red, Red, Red, Red, Red, Red,

Red, Red, White, White, Red, Red, Red, Red, White, White,
, Transp},

, White, White, White, White, Red, Red, White, White,

d, Red, Transp},

, White, White, White, White, Red, Red, White, White,

d, Red, Transp},

, White, Blue, Blue, White, Red, Red, White, Blue, Blue,
Transp},

, Red, Blue, Blue, Red, Red, Red, Red, Blue, Blue, Red,

Red, Red, Transp},

{Transp, Red, Red
Red, Transp},
{Transp, Red, Red
Red, Transp},
{Transp, Red, Red
Red, Transp},
{Transp, Red, Red
Transp, Red, Red

, Red, Red, Red, Red, Red, Red, Red, Red, Red, Red, Red,

, Red, Red, Red, Red, Red, Red, Red, Red, Red, Red, Red,

, Red, Red, Red, Red, Red, Red, Red, Red, Red, Red, Red,

, Transp, Red, Red, Red, Transp, Transp, Red, Red, Red,
, Transp},

{Transp, Red, Transp, Transp, Transp, Red, Red, Transp, Transp, Red, Red,

Transp, Transp,
{Transp, Transp,
Transp, Transp,

Transp, Red, Transp},
Transp, Transp, Transp, Transp, Transp, Transp, Transp,
Transp, Transp, Transp, Transp, Transp},

(uint8_t *)sprite_pacman_left,

(uint8_t *)
(uint8_t x*)
(uint8_t x*)
(uint8_t *)

sprite_pacman_up,
sprite_ghost_red,
sprite_ghost_pink,
sprite_ghost_scatter,

Software: Peripheral

- Gamepad
- libusb-1.0

- Event listeners

- Key-up and key-down events
- Fires for each individual event and individual button

void gamepad_set_listener(void (xlistener)(gamepad_button_event_t,
gamepad_button_t));

Software: Game Loop

- 3 stages
- STAGE_MENU
- STAGE_IN_GAME
- STAGE_END_GAME

- usleep(1000)
- Timers to give varying rates

bool pacman_move_timer() {
static int counter = 0;
counter = (counter + 1) % 15;
return counter == 0;

bool ghost_release_timer() {
game.release_timer = (game.release_timer + 1) % 2000;
return game.release_timer == 0;

Software: Pacman Movement

void set_pacman_dir(dir_t dir) {
pthread_mutex_lock(&game.mu) ;

if (is_perpendicular(game.pacman.dir@, dir)) {
game.pacman.dirl = dir;

} else {
game.pacman.dir@ = dir;

DIR_NONE;

game.pacman.dirl

}

pthread_mutex_unlock(&game.mu);

Software: Ghosts Movement

- Modes:

trapped: up & down in middle cell
release: 2-phase move to designated start point
random: at each point, pick a random direction (but never backward)
chase:
- run BFS for each direction, record depths of finding pacman
- pick the direction with lowest depth
scatter
- run BFS for each direction, record depths of finding pacman
- pick the direction with highest depth

Screenshot of finished game here

PLAYER HIGH SCORE
” (3

WELCOME
TO

DE1 SOC
PACMAN

Challenges, Lessons Learned

- Debugging hardware requires alternate workflows (e.g. ModelSim RTL
simulation)

- Clocking and managing memory accesses

- Software/Hardware integration and troubleshooting

- Nice to have HW/SW interface early

- S0 many variables in game development...

Abstractions are important
Understand why OOP is popular among game devs now

Demo

