Hardware Accelerated CNN
for Digit Recognition

Liam Bishop, Dan Cooke, Felix Hanau, Ryan

Kennedy and Richard Mouradian | \\\
. ““v‘/“‘ H“g\‘. k\“ ‘ /.‘i

.
-
/ 2 2 ,
| _ 12G8x8 12@4x
A | ' 6@24x24 gan2x12 o
|
\“ ,l’/
| ®
_/ Conv 1 Pool 1 Conv 2 Pool 2
%
e We used a very compact and simple CNN model featuring 2 convolution layers, 2 pooling layers and 1
Fully Connected layer
e Theinput to the network was a 28x28 gray scale image
e The output is a probability vector
f‘ —

Model Size and Parameters

The input to the CNN is a grayscale 28x28 image.

Layer Type Kernel Size Output Size Parameters
Number
Avg Pooling | 6 2x2 (24) 6x12x12 (864)

Avg Pooling | 12 2x2 (48) 12x4x4 (192)

3 Convolution | 6 groups of 12x8x8 (768) 12
12 5x5 (1800)
5 Fully None 50 9610
Connected

Software Implementation

e Implementation of CNN written in C to:
o Verify functionality of configuration
o Implemented using 16-bit fixed-point approximation of trained weights
o Debug output of hardware implementation
m Also used verilator to generate waveforms and compare results of different layers
e Trained model (weight and biases) with Keras
e 98% accuracy when tested with recognizing handwritten digits

Keras V

Block Diagram &

e Software:
o Sends image data for processing
o Controls hardware by telling it which layer
to compute and waits for hardware to
return acknowledgement
e Hardware:
o 4 main Sections
m MAC and After MAC
m Average Pooling
m Memory
m Control
o Data stream is looped through modules to
perform different layer operations of CNN

Software Driver Interface

AN A

rd N (N \ N\
/ N / N
(Read1l —Yes Send | » Signal = Send
AN

P4 N
\Read S|gnal/)
N P

e T4 Registers tﬁ Signal+-+

o Control Input ﬁ -
p —> SgSerlldl

o Control Qutput | siona N | mage |

i >)—N O

> \\\ //

o Input address ‘ ' k T
es o—J
o Input data 0

V<l
o
{

Signal

Read output \\\

O Output registe rs (10) \:registers and send to|

\ user /

e Control states 7

MAC and After MAC

e Used to compute Convolution layers and Fully Connected Layer
o MAC
o Convolution:
m 24 multiply and accumulate can be performed simultaneously.
o Fully Connected:
m All 10 outputs are computed simultaneously
e After MAC:
o Processes layers:
m Convolution:
e Performs RelU, adds bias to outputs of MACs, and shift outputs for proper scaling
m Fully Connected:
e Shifts outputs from MAC for proper scaling

Memory

e Stores input image, layer weights, and
between layer values

o Originally Quartus Mega-Wizard Memory
blocks but changed to implied memory
for ease of use and debugging

o Redundant memory blocks used to
allow for more that 2 accesses at a time

o Each section of memory controlled by
read and write counters

Pooling

e Used to compute Pooling Layer outputs
o Average of the 4 inputs

Layer | Data (Bits) ‘Weights + Bias Data Mem Parameter Mem Memory Needed (Bits)
(Blts) Blocks Blocks

Input 28x28x1 6 12544

6x12x12x16 13824

12x8x8x16 12x5x5x16 + 53568
12x16

Benchmarking and Results

e Software implementation runtime: 7.71 ms
e "Hardware Implementation runtime (Verilator): 0.205 ms
o Capable of processing 4878 images per second
e 37 times faster than software
e FPGA resource Utilization
o Total block memory bits: 371,328 (9%)
o Total DSP blocks: 24 (28%)
o Total Registers: 2534

