
Embedded System
Final Project: Camera Control

Fatima Dantsoho, fd2508
Micheal Lanzano, mml2238

Introduction 2
System Architecture 2

Hardware 3
OV7670 camera module 3
YCbCr 4
Signal Communication 5
SCCB (Serial Camera Control Bus) 6
Sobel Filter 6

Software 7

Discussion 8

References 9

Appendix 10

I. Introduction
The main objective of this project is to design a digital camera system using OV7670
camera module to illustrate the main concepts related to design with SystemVerilog and
DE1 SoC Board, video format, CMOS camera, basic image processing such as edge
detection in embedded programming of microcontrollers.

Figure 1 - grayscale and edge picture

A. System Architecture

Figure 2 - System Block Diagram

In this application, real time video image processing on the FPGA, scene irradiance data
collected by an OV7670 CMOS will be streamed to the FPGA target board where it will
be processed by convolution filters and finally output as a signal to a VGA display. The
software will generate the filtering mode - where it can alternate between normal mode
and filtered mode. The user will interact with software with the keyboard. Avalon buses
will be used for transferring video streams from the camera and to the VGA display.

Our project performs 3 main operations:
1. Interface with camera
2. Apply a filter to the video stream
3. Display the video on VGA output

We connect the OV7670 camera module to the FPGA, retrieve video frames from the
camera module, store it in a DUAL port BRAM temporarily and feed the data to the
sobel filter and input from the user space is used to choose the video output mode
between the filtered and normal video.

II. Hardware
A. OV7670 camera module

Figure 3 - OV7670 CMOS camera module

The OV7670 camera module is a low cost image sensor and a DSP which works at a
maximum of 30 frames per second i.e, 640 by 480 resolution, which is the same as that of
the VGA. This is equivalent to 0.3 MegaPixels. The OV7670 camera header comes with
a 9 by 2 header. The I/O signals of the camera module are listed below:

Pin Type Description

VDD Power Supply Power Supply

GND Power Supply Ground level

SDIOC Input SCCB clock

SDIOD Inout SCCB data

VSYNC Output Vertical synchronization

HREF Output Horizontal synchronization

PCLK Output Pixel clock

XCLK Input System clock

D0-D7 Output Video parallel output

RESET Input Reset (active low)

PWDN Input Power down (Active high)

Table 1 - camera I/O pins and description

B. YCbCr
The pixels from the OV7670 camera are encoded in YCbCr (or YUV) 4:2:2 format. The
luminance component (Y) is the amount of white light of a color, while Cb/U and Cr/V
are the chroma components, which encode the blue and red levels relative to the
luminance component. Y channel encodes the gray scale levels of the image and it's the
easiest way to get a monochrome image from our camera module. OV7670 uses the YUV
4:2:2 format which arrives in the following manner:

N Byte

1st U0

2nd Y0

3rd V0

4th Y1

5th U2

6th Y2

7th V2

8th Y3

… …

Table 2 - YUV 422 pixel arrival sequence

The pixels are arranged as:

Pixel 0 Y0 U0 V0

Pixel 1 Y1 U0 V0

Pixel 2 Y2 U2 V2

Pixel 3 Y3 U2 V2

Pixel 4 Y4 U4 V4

Pixel 5 Y5 U4 V4

Table 3 - pixel arrangement

C. Signal Communication
The D0 to D7 pixel data are sampled at the rising edge of the pclk clock signal. The D0-1
pixels are sampled only when HREF is high. The beginning of a line starts at the rising
edge of the HREF signal and ends at the falling edge of HREF. Because the default pixel
format is YUV 4:2:2 a pixel is represented by two bytes.

The display_480p module controls the VSYNC, HSYNC, line and frame signals. The
HSYNC and VSYNC signals give us a point of reference to know when pixel data of a
frame are being transmitted from the OV7670 camera module. Our project is designed to
display a 640 by 480 VGA frame. When HSYNC is high, 640 pixels are captured which
is a line 480 lines compose a frame which are captured when VSYNC is low.

Figure 4 - VGA frame timing diagram

D. SCCB (Serial Camera Control Bus)
OV7670 has the ability to preprocess images before it leaves the camera module because
of its internal DSP. The Serial Camera Control Bus allows us to access the DSP. If the
SCCB is working properly, the OV7670 will answer with an ACK if it has been
addressed properly
We used the De1-SoC board for this project. To write the System Verilog code and to
synthesize and generate FPGA programming files, and program the FPGA, we use
Quartus Software from Altera.

The De1-SoC board has an oscillator based clock signal generator that produces a
50MHz clock signal to the FPGA. We use the PLL divider available on the Cyclone V to
produce five clocks using the Megawizard Plug-In Manager of Quartus II Software.
These clocks have signals of 100MHz, 50MHz, 25MHz, 12.5 MHz and 130MHz
respectively which were used in different aspects of the project. For the frame buffer, we
used a 2-PORT BRAM with separate write and read clocks to accommodate the different
clock signals that drive the camera module and VGA display.

E. Sobel Filter
A filter kernel is an n x n array of coefficients that are used to calculate the sum of
products in the neighborhood of the target pixel. A very common and useful type of
image filter is the gaussian. A 2D gaussian is an n x n matrix whose elements take the
value of the gaussian probability distribution as a function of its distance from the center
of the kernel. We perform our Sobel filtering by doing a 2D convolution of our video
frames with two kernels of dimension 3x3 in both X and Y directions.

Figure 5 - Y and X convolution kernel

Figure 6 - Image filter block diagram

Figure 7 - Convolution operation for a 3x3 kernel

As seen in Figure 5, we implemented 2 line buffers of size 800 which corresponds to the
width of the VGA monitor. OV7670 camera module transfers images in 1D stream of bits
so we use these buffers to stream the bits for the kernel convolution of 3x3 dimension.

III. Software

Since the sobel convolution module we implemented has a predetermined kernel,
the only thing our software does is switch vga output from unfiltered video to video with

edge detection applied. When a user presses the enter key, a get_filter() method in user
space initiates an ioctl() call that reads a register in kernel space. The program prints the
output mode corresponding to the register entry and calls the set_filter() method to make
another call to ioctl() to cycle to the next output mode

IV. Discussion

With 4 different clock domains (FPGA,VGA, camera, and SCCB (I2C))
maintaining system stability and synchronizing the modules was a challenge. Further, as
several modules took more than a single cycle to complete, these pipelines added further
complexity to our project in the temporal domain. While we anticipated this
conceptually, the reality of it was a lot to deal with. As a result we had to scale back our
ambitions on the project. But by that same token it provided a tremendous learning
opportunity that will be valuable going forward.

V. References

[1] Web.Mit.Edu, 2022,
http://web.mit.edu/6.111/www/f2016/tools/OV7670_2006.pdf

[2] Guo, Yanhui, and Amira Ashour. Neutrosophic Set In Medical Image Analysis.

[3] Campos, Nelson. "2D Convolution In Hardware". Sistenix.Com, 2022,
https://sistenix.com/sobel.html.

[4] "Digital Camera Project". Dejazzer.Com, 2022,
http://www.dejazzer.com/eigenpi/digital_camera/digital_camera.html.

[5] “Gradient Filter Implementation on an FPGA - Part 1 Interfacing an FPGA
with a Camera.” Blog - FPGA - element14 Community,
https://community.element14.com/technologies/fpga-group/b/blog/posts/gradient-fi
lter-implementation-on-an-fpga---part-1-interfacing-an-fpga-with-a-camera.

http://web.mit.edu/6.111/www/f2016/tools/OV7670_2006.pdf
http://www.dejazzer.com/eigenpi/digital_camera/digital_camera.html
https://community.element14.com/technologies/fpga-group/b/blog/posts/gradient-filter-implementation-on-an-fpga---part-1-interfacing-an-fpga-with-a-camera
https://community.element14.com/technologies/fpga-group/b/blog/posts/gradient-filter-implementation-on-an-fpga---part-1-interfacing-an-fpga-with-a-camera

VI. Appendix

TOP MODULE:

module ov7670_vga_fb(CLOCK_50, HREF,VS, SDA, SCLK, clk_25, v_clk,
incoming_data, pclk,R,G,B,VGA_VS,VGA_HS, VGA_BLANK_N, LEDR,reset,
write, writedata, chipselect, address);

input CLOCK_50;
output [9:0] LEDR;
assign LEDR[9:0] = 10'b0;

input reset;
input [7:0] writedata;
input write;
input chipselect;
input [7:0] address;

output reg [7:0] R;
output reg [7:0] G;
output reg [7:0] B; //VGA
output reg VGA_HS,VGA_VS;
output wire VGA_BLANK_N;
output wire v_clk;

inout SDA;
output SCLK;
input VS,HREF;
input pclk; //OV7670
input [7:0] incoming_data;
output wire clk_25;
reg [7:0] red, green , blue;
wire [15:0] tx;
wire [3:0] sccbState;

assign v_clk = clk_25;

// framebuffer (FB)
localparam FB_WIDTH = 640;
localparam FB_HEIGHT = 480;
localparam FB_PIXELS = FB_WIDTH * FB_HEIGHT;
localparam FB_ADDRW = $clog2(FB_PIXELS);
localparam FB_DATAW = 8; // color bits

localparam CORDW = 16;

reg fb_we;
reg [FB_ADDRW-1:0] fb_addr_write, fb_addr_read;
reg [FB_DATAW-1:0] fb_colr_write;
reg [FB_DATAW-1:0] fb_colr_read;

wire clk_100, clk_50, clk_12, clk_130, clk_150;

clk_div clkdiv0 (
.refclk(CLOCK_50),
.rst(0),
.outclk_0(clk_100),
.outclk_1(clk_50),
.outclk_2(clk_25),
.outclk_3(clk_12),
.outclk_4(clk_130),
.outclk_5(clk_150)

);

bram_sdp #(
.WIDTH(FB_DATAW),
.DEPTH(FB_PIXELS)

) bram_inst (
.clk_write(pclk),
.clk_read(v_clk),
.we(fb_we),
.addr_write(fb_addr_write),
.addr_read(fb_addr_read),
.data_in(fb_colr_write),
.data_out(fb_colr_read)

);

reg [1:0] state = 0;
reg pixel_valid = 0;

always @(posedge pclk) begin
case (state)

0:
if (VS & conf_done)

state <= 1;
1:

if (~VS) begin
fb_we <= 1;
fb_addr_write <= 0;

fb_colr_write <= incoming_data;
state <= 2;

end
2:

if (HREF) begin
pixel_valid <= ~pixel_valid;
if (pixel_valid) begin
fb_addr_write <= fb_addr_write + 1;
fb_colr_write <= incoming_data;

end
else if (VS)

state <= 1;
endcase

end

wire paint; // which area of the framebuffer should we paint?
assign paint = (sy >= 0 && sy < (FB_HEIGHT) && sx >= 0 && sx <

(FB_WIDTH));

always @(posedge v_clk) begin
if (frame) begin // reset address at start of frame

fb_addr_read <= 7;
filter_rst <= 1;

end else if (paint) begin // increment address in painting
area

fb_addr_read <= fb_addr_read + 1;
filter_rst <=0;

end
end

// reading from BRAM takes one cycle: delay display signals to
match

reg paint_p1, hsync_p1, vsync_p1;
always @(posedge v_clk) begin

paint_p1 <= paint;
hsync_p1 <= hsync;
vsync_p1 <= vsync;

end

wire [7:0] filtered_pxl;
reg filter_mode ;
reg filter_rst;

always@(posedge pclk)begin

case(address)
8'h00: filter_mode <= writedata;
8'h01: filter_mode <= writedata;

default: filter_mode <= 8'b00;
endcase

end

sobel filter
(.clock(v_clk),

.reset(filter_rst),

.inputPixel(fb_colr_read),

.outputPixel(filtered_pxl)
);

// VGA output

wire signed [CORDW-1:0] sx, sy;
wire vsync, hsync, de, line;
//frame sets fb_addr_read to 0

wire frame;
reg vga_rst = 0;

display_480p #(.CORDW(CORDW)) display_inst (
.clk_pix(v_clk),
.rst(vga_rst),
.hsync(hsync),
.vsync(vsync),
.de(de),
.frame(frame),
.line(line),

.sx(sx),
.sy(sy)

);

always @(posedge v_clk) begin
VGA_HS <= hsync_p1;
VGA_VS <= vsync_p1;

if(paint_p1)
begin

R <= red;
G <= green;

B <= blue;

end
end

always @(filter_mode) begin
case(filter_mode)

1'b0: begin
red <= filtered_pxl;
green <= filtered_pxl;
blue <= filtered_pxl;

end
1'b1: begin

red <= fb_colr_read;
green <= fb_colr_read;
blue <= fb_colr_read;

end
endcase

end

assign VGA_BLANK_N = de;

reg [2:0] strt = 3'd0;
wire conf_done;

always @(posedge clk_25)
if (&strt)

strt <= strt;
else

strt <= strt + 1'h1;

wire [7:0] SCCB_addr;
wire [7:0] SCCB_data;

camera_configure #(.CLK_FREQ (25000000)) camera_configure_0
(

.clk (clk_25),

.start ((strt == 3'h6)),

.sioc (SCLK),

.siod (SDA),

.done (conf_done),
.SCCB_addr (SCCB_addr),
.SCCB_data (SCCB_data)
);

Endmodule

FRAME BUFFER:

module bram_sdp #(
parameter WIDTH=8,
parameter DEPTH=256,
parameter INIT_F=""
)

(
input wire logic clk_write, // write clock (port a)
input wire logic clk_read, // read clock (port b)
input wire logic we, // write enable (port

a)
input wire logic [ADDRW-1:0] addr_write, // write address (port

a)
input wire logic [ADDRW-1:0] addr_read, // read address (port

b)
input wire logic [WIDTH-1:0] data_in, // data in (port a)
output logic [WIDTH-1:0] data_out // data out (port b)
);

localparam ADDRW = $clog2(DEPTH);
logic [WIDTH-1:0] memory [DEPTH];
logic [WIDTH-1:0] edge_filter;
initial begin

if (INIT_F != 0) begin
$display("Loading memory init file '%s' into bram_sdp.",

INIT_F);
$readmemh(INIT_F, memory);

end
end

// Port A: Sync Write
always_ff @(posedge clk_write) begin

if (we) memory[addr_write] <= data_in;
end

// Port B: Sync Read
always_ff @(posedge clk_read) begin

data_out <= memory[addr_read];
end

Endmodule

SOBEL FILTER:

module sobel #(parameter WORD_SIZE= 8, ROW_SIZE = 800 , BUFFER_SIZE =
3)

(input logic clock,
input logic reset,

input logic [WORD_SIZE-1:0] inputPixel,
output logic [WORD_SIZE-1:0] outputPixel);

//localparam BUFFER_SIZE=3;

logic [BUFFER_SIZE-1:0] [WORD_SIZE-1:0] sliding [BUFFER_SIZE-1:0];
sliding_window #(WORD_SIZE,BUFFER_SIZE) my_window(.*);

logic [WORD_SIZE+1:0] gx1, gx2, gy1, gy2;

always_ff @(posedge clock)
if (reset) begin

gx1 <= 0;
gx2 <= 0;
gy1 <= 0;
gy2 <= 0;

end
else begin

gx1 <= sliding[0][0] + sliding[2][0] + (sliding[1][0]<<1);
gx2 <= sliding[0][2] + sliding[2][2] + (sliding[1][2]<<1);
gy1 <= sliding[0][0] + sliding[0][2] + (sliding[0][1]<<1);
gy2 <= sliding[2][0] + sliding[2][2] + (sliding[2][1]<<1);

end

logic [WORD_SIZE+1:0] gx, gy;
always_comb begin

if (gx1 > gx2) gx <= gx1-gx2;
else gx <= gx2 - gx1;

if (gy1 > gy2) gy <= gy1-gy2;
else gy <= gy2-gy1;

end

logic [WORD_SIZE+2:0] g;

always_comb g <= gy+gx;

always_ff @(posedge clock)
if (reset)

outputPixel <= 0;
else

if (g[WORD_SIZE+2]) outputPixel <= {WORD_SIZE{1'b1}};
else outputPixel <= g[WORD_SIZE+1:2];

endmodule

SLIDING WINDOW with LINE BUFFERS:

module sliding_window #(parameter WORD_SIZE=8, BUFFER_SIZE=3,
ROW_SIZE =798)

(input logic clock,
input logic reset,

input logic [WORD_SIZE-1:0] inputPixel,
output logic

[BUFFER_SIZE-1:0][WORD_SIZE-1:0]sliding[BUFFER_SIZE-1:0]);

logic [(BUFFER_SIZE-1)*WORD_SIZE-1:0] buffer[ROW_SIZE-1:0];
logic [$clog2(ROW_SIZE)-1:0] ptr;

always_ff @(posedge clock)
if(reset) begin

ptr <=0;
sliding[0][0] <= inputPixel;
sliding[0][1] <= 0;
sliding[0][2] <= 0;
sliding[1][0] <= 0;
sliding[1][1] <= 0;
sliding[1][2] <= 0;
sliding[2][0] <= 0;
sliding[2][1] <= 0;
sliding[2][2] <= 0;

end
else begin

sliding[0][0] <= inputPixel;
sliding[1][0] <= sliding[0][0];
sliding[1][1] <= sliding[0][1];
sliding[1][2] <= sliding[0][2];
sliding[2][0] <= sliding[1][0];
sliding[2][1] <= sliding[1][1];
sliding[2][2] <= sliding[1][2];

buffer[ptr] <= sliding[BUFFER_SIZE-1][BUFFER_SIZE-2:0];

sliding[0][BUFFER_SIZE-1:1] <= buffer[ptr];
if(ptr < ROW_SIZE-BUFFER_SIZE) ptr <= ptr + 1;
else ptr <= 0;

end
endmodule

VGA SIGNAL GENERATOR:

module display_480p #(
CORDW=16, // signed coordinate width (bits)
H_RES=640, // horizontal resolution (pixels)
V_RES=480, // vertical resolution (lines)
H_FP=16, // horizontal front porch
H_SYNC=96, // horizontal sync
H_BP=48, // horizontal back porch
V_FP=4, // vertical front porch
V_SYNC=2, // vertical sync
V_BP=35, // vertical back porch
H_POL=0, // horizontal sync polarity (0:neg, 1:pos)
V_POL=0 // vertical sync polarity (0:neg, 1:pos)
) (
input wire logic clk_pix, // pixel clock
input wire logic rst, // reset in pixel clock domain
output logic hsync, // horizontal sync
output logic vsync, // vertical sync

// output logic blank_n,
output logic de, // data enable (low in blanking

interval)
output logic frame, // high at start of frame
output logic line, // high at start of line
output logic signed [CORDW-1:0] sx, // horizontal position
output logic signed [CORDW-1:0] sy // vertical position
);

// horizontal timings
localparam signed H_STA = 0 - H_FP - H_SYNC - H_BP; //

horizontal start
localparam signed HS_STA = H_STA + H_FP; // sync

start
localparam signed HS_END = HS_STA + H_SYNC; // sync

end
localparam signed HA_STA = 0; // active

start

localparam signed HA_END = H_RES - 1; // active
end

// vertical timings
localparam signed V_STA = 0 - V_FP - V_SYNC - V_BP; //

vertical start
localparam signed VS_STA = V_STA + V_FP; // sync start

localparam signed VS_END = VS_STA + V_SYNC; // sync end
localparam signed VA_STA = 0; // active start
localparam signed VA_END = V_RES - 1; // active end

logic signed [CORDW-1:0] x, y; // screen position

// generate horizontal and vertical sync with correct polarity
always_ff @(posedge clk_pix) begin

hsync <= H_POL ? (x > HS_STA && x <= HS_END)
: ~(x > HS_STA && x <= HS_END);

vsync <= V_POL ? (y > VS_STA && y <= VS_END)
: ~(y > VS_STA && y <= VS_END);

end

// control signals
always_ff @(posedge clk_pix) begin

de <= (y >= VA_STA && x >= HA_STA);
frame <= (y == V_STA && x == H_STA);
line <= (x == H_STA);
if (rst) begin

de <= 0;
frame <= 0;
line <= 0;

end
end

// calculate horizontal and vertical screen position
always_ff @(posedge clk_pix) begin

if (x == HA_END) begin // last pixel on line?
x <= H_STA;
y <= (y == VA_END) ? V_STA : y + 1;// last line on

screen?
end else begin

x <= x + 1;
end
if (rst) begin

x <= H_STA;
y <= V_STA;

end
end

// delay screen position to match sync and control signals
always_ff @ (posedge clk_pix) begin

sx <= x;
sy <= y;
if (rst) begin

sx <= H_STA;
sy <= V_STA;

end
end

endmodule

