Vector Homomorphic Encryption Accelerator

CSEE4840 Final Project
Lanxiang Hu, Liqin Zhang, Enze Chen

Vector Homomorphic Encryption Accelerator

Outline

* Introduction to Homomorphic Encryption Scheme.
* System Block Diagram.
* Theory.
o Cryptographical operations.
o Encrypted domain operations.
* Hardware Implementation and Simulation.
* Software Implementation.
* Hardware-Software Interface.

* Challenge and Conclusion.

Vector Homomorphic Encryption Accelerator &5 COLUMBIA | ENGINEERING

7% The Fu Foundation School of Engineering and Applied Science

Introduction to Homomorphic Encryption Scheme

encryptedx encrypted f

encrypted x

X encrypted f(x) encrypted f(x)

Client Cloud Client Cloud
Figl. Most Homomorphic Encryption Fig2. The scheme used in our project.
schemes: The cloud has access to the)

The cloud computes f(x) without

function f, and the client sends encrypted

) knowing either x or f(-
x to the cloud for computation. g ()

Vector Homomorphic Encryption Accelerator

System Block Diagram

User-space functions & API

|

Kernel-space functions
Device drivers

|

Hardware
(Computational units)

Vector Homomorphic Encryption Accelerator

ENGINEERING

nd Applied Science

Il

Software

Client

Client-side
Linear Transform

Client-side
Inner Product

Client-side
Polynomial

inal Syste

sigbals

Decrypt

syséalls.

Encrypt

Laa

Send Key Switching Matrix,
Operation Type, Data Addr

| Send Encrypted Result

T
1y

Linear Transform

sighals

Addition

Inner Product

Polynomial

Server

m Bl

ock Diagram

Interface H Hardware
| H H L
i Memory
i Bit
: Representation Random Matrix
Key-Switching H Vector Generator
Devive Driver :
Inteupts Bit linear-feedback
H Representation shift register
i Matrix
odtis
! e
10 Memory Mgmt .
i Matrix
Client-side : Loader Outer Product
Kernel i
i Nearest
R os byl i
Device Drivers :
(one for each) § Helper Modules
iogtls
+ Vector
foct calls ; Addition
interfupts

10 Memory Mgmt

Server-side
Kemel

Kemel

Encrypted-Domain Operation Modules

B H . .
Memory

L——> Glientside Accelerator

_,—> Server-side Accelerator

Encyption
Accelerator

Vector Homomorphic Encryption Accelerator

m

OLUMBIA | ENGINEERING

¢ Fu Foundation School of Engincering and Applied Science

Final System Block Diagram

Software Interface Hardware

Clier
Linear Tramsform omem || omem
side
Inner Product ot
Representation Random Matrix
i =) vear Generator Client-side Accelerator

Client-side Devive Driver

10 Memory Mgmt I I
e A
Kemel
Send Key Switching Matr NG
ey Switching Matrix, Vector-Operation ger
Operation Type, Data Add: | Send Encrypted Result Devisgwmm .

(one for each)

Linear Transform | foctl calls
10 Memory Mgmt
Server-side Encrypted-Domain Gperation Modules
Kemel
Server-side Accelerator
Inner Product
Kemel
Dmem | | Dmem
Polynomial
Memory

Polynomial linear-feedback

Bit
Representation shift register
Matrix

Encyption
Accelerator

Vector Homomorphic Encryption Accelerator & COLUMBIA | ENGINEERING

¢ Fu Foundation School of Enginecring and Applied Science

Theory — Overview

* Cryptographical Operations:
o Encryption: ¢ = E(x), choose ¢ such that Sc = wx + e, S is secret key.
o Decryption: x = D(c), decrypt ¢ with S, x = int(Sc/w).
o Key Switching:
Switching Secret key from S to a new key S” = [, T] such that Sc = S’c’.
Return Key Switching Matrix M. Key Switching Matrix M encodes computational details.
Send M to server.
Server simply uses M to carry out computation by performing linear transformation to c.

YV VVY

* Encrypted Domain (Integer Vector) Operations:
o Addition of two vectors.
o Linear Transformation.
o Weighted inner product.

Vector Homomorphic Encryption Accelerator

Theory — Cryptography

* Security: Arithmetic Logic Units perform computations in encrypted domain, and the results can be
only be decrypted by the client with the secret key.

* Application Scenarios: Without direct access to ciphertext in the cloud, the client can get
computational results while the cloud server is agnostic about computational details.

Definition E1 c;, c2 are two ciphertexts in the big data stored in the server.
Definition E2 S is the secret key for encryption. To be mentioned, all the ciphertexts are encrypted with the same secret key,

and the key only depends on the operation we choose.
Definition E3 M is the key-switch matrix that contains the information of the operation as well as the switched secret key.

Definition E4 x;, x5 are the corresponding plaintexts of ciphertexts ci, co. Usually the cipher-plain pairs are predone and

ENGINEERING

ool of Engineering and Applied Science

Vector Homomorphic Encryption Accelerator

Theory — Encrypted Domain Operations

ADDITION
S(Cl —+ Cz) _— ”LU(Xl + X2) T (el + 62)
SOLUTION
Client Keep S the same. Send cq, co
Server C/ = C1 + C2

Vector Homomorphic Encryption Accelerator O ECF)%UMBIA ENGINE
A he Fu Fou

Theory — Encrypted Domain Operations

LINEAR TRANSFORMATION

(GS)c =wGx + Ge

SOLUTION
Client Create M for s’ = GS, send c, M

Server C/ — MC

Vector Homomorphic Encryption Accelerator O EC%UMBIA ENG_INEE RN
7~ TheFu ing and Applied Science

Theory — Encrypted Domain Operations

WEIGHTED INNER PRODUCT
h = xi Hx |
T
xT Hxs = vec (M) vec (x1x3) vee (STHS)" {Vec(;l%)l — wx; Hxy + €
SOLUTION

ciient Create M for S’ = vec (STHS)T. Send M,w,c1, C2

C =

Server Y {Vec (ClC2T> w

Vector Homomorphic Encryption Accelerator © COLUMBIA ENGINEF RING
s Applied Science

Theory — Encrypted Domain Operations

L T
POLYNOMIAL X, = [1,21,22, ..., Ty
;. T g =] L0 h =x,T Hx
c = |w,cq,...,cp =10 g p HXp
SOLUTION
Client Create M for S = vec (S’THS')T. Send M,w,c’
Server C” =M \‘VCC (C/C/T)“
w

Vector Homomorphic Encryption Accelerator O ECF)%UMBIA ENGINE
A he Fu Fou

Hardware Implementation and Simulation

* Key-Switching Modules:
o Take bit-representation of a vector (at most 8-element wide, 32-bit each).
o Take bit-representation of a matrix (at most 8 by 8 in size, 32-bit each).
o Get a random matrix with integer entries (at most 8 by 8 in size, 16-bit each).
o Get a noise matrix with small integer entries (at most 8 by 8 in size, 4-bit each).
* Encrypted-Domain Computational Modules:
o Vector addition (at most 16-element wide, 32-bit each).
o Linear Transformation (supports linear operator of at most 16 by 16 in size, 32-bit each).

o Weighted Inner Product (supports linear operator of at most 16 by 16 in size, 32-bit each).

Vector Homomorphic Encryption Accelerator & - 1\ EN GIN dE‘E RING

Applied Science

Implementation and Simulation — Key-Switching Modules

BIT REPRESETATION OF VECTOR : convert a vector into its bit representation.

First of all, pick a scalar £ that satisfies 2 > |c|. Assume ¢; = by + b;12 + - - - + b;(,_1)2°~1. We can then rewrite c in its

T
bit representation following the rule: b; = [bm_l), .. -abihbi(]] with b;, € {—1,0,1},k € {£—1,...,0}. And this gives
Eq. 3.

T
c*z[b{,...,bf] 3)
Similarly, we can make a bit-representation of the secret key S to acquire a new key S* with Eq. 4.
* b—
Sij s [2 1Sij,...,2SZ-J-,S,-j] (4)

module bit_repr_vector(input logic clk,
input logic reset,
. input logic start,
Moore machine input logic [3:0] width, // n <= 8
input logic signed [31:0] c_i,
input logic [7:0] ell, // 1 <= 32

output logic [7:0] output_length, // at most 256

output logic signed [31:0] data_out,
output logic done);

logic write_enable;
logic read_enable;
logic comp_enable;
logic [7:0] write_index;
logic [7:0] comp_index;
logic [7:0] read_index;

Vector Homomorphic Encryption Accelerator

ENGINEERING

and Applied Science

Implementation and Simulation — Key-Switching Modules

obj dir/Vkey switching
width v: 8

ell v: 5

width m: 8

length m: 2

ell m: 4

operation type received: ©
width received: 8

ell received: 5

it cll = { ox1, ox2, 0x3, ox4, ©-th input received: 1

oxffffffff, oxfffffffe, oxfffffffc, Ooxfffffff8}; 1-th input received: 2

2-th input received: 3

3-th input received: 4

: 4- i i s =
1t c_star[] = { 0x0, 0x0, 0x0, X0, 5;2 igg‘dt [:E:::g -
ox1, 0x0, 0x0, 0x0, 6-th input received: -4
0x1, 0x0, 0x0, 0x0, 7-th input received: -8

0x0, 0x1, 0x1l, 0x0,
0x0, 0x1, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
oxffffffff, 0xo0, 0x0,
oxffffffff, 0xo0, 0x0,
oxffffffff, 0xo0, 0x0,
oxffffffff, 0xo0, 0x0,

OO MM OO OOONOOOO
o
=

Vector Homomorphic Encryption Accelerator &0 COLUMBIA | ENGINEERING

7~ The Fu Foundation School of Engincering and Applied Science

Implementation and Simulation — Key-Switching Modules
BIT REPRESETATION OF MATRIX : convert a matrix into its bit representation.

Similarly, we can make a bit-representation of the secret key S to acquire a new key S* with Eq. 4.
S = |26718y, ..., 28, Sy (4)

operation type received: 1

int S[2]1[8] = { {@x6, 0x5, 0x0, 0x3, 0x9, 0x3, 0x3, 0x6}, pidth received: 8
length received: 2
{0x9, 0x7, 0x6, 0x8, 0x2, 0x0, Ox6, Ox1}}; ell received: 4

input received: 6

input received: 5

input received: ©

input received: 3

int S_star[2] [32] = { {0X30, 0X18, OXC, @XG, input received: 9

0x28, 0x14, 0xa, OX5, input received: 3

0x0, 0x0, 0x0, 0x0, ot i

0x18, Oxc, 0x6, 0x3, input received: 7

input received: 6

0X48, 0X24, 0X12, 0X9, input received: 8

input received: 2

0X18' 0XC, 0)(6' 0X3' input received: ©

0x18, 0Oxc, 0x6, 0x3, input received: 6

input received: 1
0x30, 0x18, Oxc, Ox6}, 48 0K
0x24, 0x12, 0x9, 35 ok
0x38, 0xl1lc, Oxe, 0x7, ZGOSK
0x30, 0x18, 0xc, 0x6, 20 0K
0x40, 0x20, 0x10, 0x8, Soe
0x10, 0x8, 0x4, 0x2, i
0x0, 0x0, 0x0, 0x0, gg:
0x30, 0x18, Oxc, 0x6, 24 0K
0x8, 0x4, 0x2, 0x1}}; 12 0K

Vector Homomorphic Encryption Accelerator &0 COLUMBIA | ENGINEERING

7~ The Fu Foundation School of Engincering and Applied Science

Implementation and Simulation — Key-Switching Modules
GET RANDOM MATRIX: get an integer-valued random matrix.

// seeds below can be modified
logic [15:0] seed_@ = 16'd1l;
logic [15:0] seed_1 = 16'd2;
logic [15:0] seed_2 = 16'd3;
logic [15:0] seed_3 = 16'd4;
logic [15:0] seed_4 = 16'd5;
logic [15:0] seed_5 = 16'd6;
logic [15:0] seed_6 = 16'd7;
logic [15:0] seed_7 = 16'd8;
// seed above can be modified

logic signed [15:0] 1fsr_out_0;
logic signed [15:0] 1fsr_out_

Moore machine Wlth logic signed [15:0] 1fsr_out_:
logic signed [15:0] 1fsr_out_.

logic signed [15:0] 1fsr_out_.
LFSR pseudorandom logic signed [15:0] 1fsr_out_
logic signed [15:0] 1fsr_out_
logic signed [15:0] 1fsr_out_
number generator.

// generate multiple LFSR instances to create a Gaussian random variable at each cycle

// 8 16-bit LFSR

1fsr 1fsr_0(.clk(clk), .resetn(reset), .seed(seed_0), .lfsr_out(lfsr_out_0)

L7 1fsr_1(.clk(clk), .resetn(reset), .seed(seed_1), .lfsr_out(lfsr_out_1)

1fsr 1fsr_2(.clk(clk), .resetn(reset), .seed(seed_2), .lfsr_out(lfsr_out_2)

1fsr 1fsr_3(.clk(clk), .resetn(reset), .seed(seed_3), .lfsr_out(lfsr_out_3)

1fsr 1fsr_4(.clk(clk), .resetn(reset), .seed(seed_4), .lfsr_out(lfsr_out_4)

1fsr 1fsr_5(.clk(clk), .resetn(reset), .seed(seed_5), .lfsr_out(lfsr_out_5)

1fsr 1fsr_6(.clk(clk), .resetn(reset), .seed(seed_6), .lfsr_out(lfsr_out_6)

1fsr 1fsr_7(.clk(clk), .resetn(reset), .seed(seed_7), .lfsr_out(lfsr_out_7)

Vector Homomorphic Encryption Accelerator &0 COLUMBIA | ENGINEERING

7\ The Fu Foundation School of Engineering and Applied Science

Implementation and Simulation — Encrypted Domain Operations
ADDITION : Each time add n elements of input.

00000000 I 00000001
00000000 100000002
00000000 I 00000003
00000000 100000004
00000000 100000005
00000000 100000006
00000000 100000007
00000000 100000008
00000000 100000009
00000000 100000003
00000000 10000000b
00000000 10000000c¢
00000000 I 0000000d
00000000 10000000e
00000000 10000000f
00000000 100000010

00000000 100000002 100000000
00000000 100000004 100000000
00000000 100000006 100000000
00000000 100000008 100000000
00000000 100000002 100000000
00000000 10000000c 100000000
00000000 10000000e 100000000
00000000 100000010 100000000
00000000 100000012 100000000
00000000 100000014 100000000
00000000 100000016 100000000
00000000 100000018 100000000
00000000 100000012 100000000
00000000]0000001c 100000000
00000000 10000001e 100000000
00000000 100000020 100000000

Vector Homomorphic Encryption Accelerator &0 COLUMBIA | ENGINEERING

7N The Fu Foundation School of Engineering and Applied Science

Implementation and Simulation — Encrypted Domain Operations
LINEAR TRANSFORMATION :Each time do inner product of n elements of ¢ and M,

sum the result after a whole line has been calculated. Do several epochs until whole M
is scanned.

https://drive.google.com/file/d/1cqC6TUnnxU2AczAaUOS2IxPEVCOCCsqM/view?usp=sharing

Vector Homomorphic Encryption Accelerator &0 COLUMBIA | ENGINEERING

7N The Fu Foundation School of Engineering and Applied Science

Implementation and Simulation — Encrypted Domain Operations

‘Batch Size’ = n : Deal with n elements of input vectors at a time.

WEIGHTED INNER PRODUCT :

STAGE 1: Load input ¢l and input c2. Do outer product of c1 and c2.

STAGE 2: Vectorize the output in STAGE 1. Divide the vector by w.

STAGE 3: Do linear transformation of the output, using same theory as in LINEAR
TRANSFORMATION.

Vector Homomorphic Encryption Accelerator & g?LUMBlA ENG_INFER}NG
A he Fu a £ S

ccccc g and Applied Science

Implementation and Simulation — Encrypted Domain Operations

GTKWave - weighted_inner_product.ved

File Edit Search Time Markers View Help
go = L‘H‘A E3 () (= From:| 0sec To: 530ns Marker: -- | Cursor: 0 sec
v SST Signals Waves
B .5 TOP Time
£ weighted_inner_product el
reset
start
M on
gen_enable
vec_enable
read _enable
y[31:0] (FF+ 90+ JFF)
v reate c 1 1[31:0]
wire start c_1 2[31:0]
)] c 1 3[31:0]
wire templ[31:0] c 1 4[31:0]
wire temp2[31:0] c 2 1[31:0] n ed dat:
wire temp3[31:0] c_2 2[31:0] c_1[2] = {ox1, exfffffffe};
§ t 4[31:0' c 2 3[31:0]
wire empAl] c 2 4[31:0] t c_2[2] {ox5, oxfffffffd};
wire temp5[31:0] -
- templ[31:0]
wire temp6[31:0] temp2[31:0] enc ed linea ¢
wire temp7[31:0] temp3[31:0] Mial [4] Gl (2, &, Bl 0
{oxfffffffe, oxfffffffd, 0xfffffffc Oxfffffffb}
i : temp4[31:0] o o 0
wire . temp8{31:0] - {ex3, @x6, €x9, exc},
wire temp9[31:0] {oxfffffffc, oxfffffffb, ox9, Bxc}
Filter: b

Append | | Insert Replace

i

t al4]l = {oxfffffff9, 0x9, oxffffffeb, Oxffffffe9};

&5 COLUMBIA | ENGINEERING

7N The Fu Foundation School of Engineering and Applied Science

Vector Homomorphic Encryption Accelerator

start writing to input type: 2

1nput: o :
input: 7 input: 1
T input: 8 }"p”E: §
s input: o ot
i2p3t3 4 input: 6 inzut: 0
ingut; 5 %nput: 0 input; 0
input: 6 J._nput: e input: ©
input: 7 input: © input: @
input: 8 input: © input: o
input: 9 input: © input: ©
input: 1 input: @ input: ©
input: 2 vector output received: -40 input: ©
}npui: i 0K input: ©
input: , ;)
input< o input: -2 }nput. 0
Lnput: ; . o input: ©
input: -2 input: -3 g
. ’ : . input: ©
input: -3 input: -4 .
. e vector output received: -7
input: -4 input: -5 OK
vector output received: 3 input: -6 input: -2
0K input: -7 input: 3
vector output received: 5 : .o . :
input: 8 input: -4
ax input: -9 i :
vector output received: 7 . : input: -5
0K input: © input: ©
vector output received: 9 input: © input: ©
0K input: © }nput: 0
vector output received: 11 input: @ input: ©
OK input: © input: ©
vector output received: 13 input: © }nput: 0
OKt tput ived: 15 NAGE: 8 %npui: g
vector output received: input: @ input:
vector output received: 40 }DPUt: 9
: input: ©
0K input: ©

Vector Homomorphic Encryption Accelerator &5 COLUMBIA | ENGINEERING

7~ The Fu Foundation School of Engincering and Applied Science

Software Implementation

* Matrix operation library.

* Client-side operation library.
* Server-side operation library.
* Syscall library.

e Kernel code for device driver.

Vector Homomorphic Encryption Accelerator & COLUMBIA | EN GINEERING

7N The Pu Foundation School of Engincering and Applied Scict

Software Implementation

* Matrix operation library.

* Client-side operation library.
* Server-side operation library.
* Syscall library.

e Kernel code for device drivers.

Vector Homomorphic Encryption Accelerator & COLUMBIA | EN GINEERING

7N The Pu Foundation School of Engincering and Applied Scict

Hardware-Software Interface

* AXI master-slave pair:
o 32-bit write and read data.
o Addresses control types of operation each write/read corresponds.

* As aresults, control signals need to be sent off by the user as well (more complicated software coding).

load_op_type = 4'h0; : load_op_type = 4'h0;
load_width = 4'h1; 7 load_data_type = 4'h1l;
load_length = 4'h2; z load_width = 4'h2;
load_ell = 4'h3; :0] load_length = 4'h3;
load_input = 4'h4; :0] load_input = 4'h4;

bit_repr_vector = 4'ho;
bit_repr_matrix = 4'hl;
get_random_matrix = 4'h2;
get_noise_matrix = 4'h3;

vector_addition = 4'h0;
linear_transform = 4'hl;
weighted_inner_product = 4'h2;

Vector Homomorphic Encryption Accelerator &5 COLUMBIA | ENGINEERING

7N The Pu Foundation School of Enginecring and Applied Science

Hardware-Software Interface

User Homomaorphic Device driver
Encryption library (kernel code)

client_functions.c key_switch.c/h
server_functions.c ”| encryped_domain.cih

A

Memory mapped registers

Matrix library
math register for keyswitching device driver
) register for encrypted domain device driver
Avalon AXI master Avalon AXI slave
Avalon AXI slave Avalon AXI master
hardware
top - level key_switch.sv encrypted_domain.sv
A A
gg,:zp:,;f;lq";:\‘: vector_addition.sv
Ifsr.sv L_repr_ . linear_transform.sv

—ls get_rand_matrix.sv

Ifsrd.sv get_noise_matrix.sv weighted_inner_prod.sv

Vector Homomorphic Encryption Accelerator

&5 COLUMBIA | ENGINEERING

7\ The Fu Foundatio

00

of Engincering and Applied Science

File Edit Search Time
o F3E B . =
v SST

& .2 TOP

= key_switching
F bit_repr_matrix0

|- bit_repr_vector0 |

B} ..: get_noise_matrix0
B : get_random_matrix0

wire output_length[7:0]
wire ratio[31:0]

wire read_enable

wire read_index[7:0]
wire remaining_n[31:0]
wire reset

wire start

wire width[3:0]

wire write_index[7:0]

Filter:

Append | Insert Replace

Markers

View Help
From:
Signals
Time
reset
start 0
start 1

writedata[31:0]
comp _enable

read enable

write enable
comp_enable

read enable
ell[7:0]

DATA OUT[31:0]
done @

done 1

DONE

OUTPUT LENGTH[3:0]
OUTPUT WIDTH[7:0]

GTKWave - key_switching.ved

0 sec To: 5090 ns

Waves

Marker: -- | Cursor: 4766 ns

Vector Homomorphic Encryption Accelerator

&5 COLUMBIA | ENGINEERING

7N The Fu Foundation School of Engineering and Applied Science

File Edit Search Time Markers

[-L) o =i

ASST]

&.5TOP
& encrypted_domain
linear_transform0
vector_addition0

C DO

wire C_Z(3)|3Lv]
wire c_2_1[31:0]

wire c_2_2[31:0]

wire c_2_3[31:0]

wire c_2_4[31:0]

wire clk

wire done

wire gen_index[2:0]

wire gen_row_num[2:0]

Filter:

Append | Insert Replace

View Help

GTKWave - encrypted_domain.vcd

From: 0 sec

Signals

Time
reset
start @
start_1
start 2
M(@)[31:0]
M(1)[31:0]
M(2)[31:0]
M(3)[31:0]
all loaded
gen_enable
vec_enable
M on
DATA 0UT ©[31:0]
DATA 0UT 1[31:0]
DATA OUT 2[31:0]
DATA OUT 3[31:0]
DONE

Waves

-- | Cursor: 7180 ns

Vector Homomorphic Encryption Accelerator

&5 COLUMBIA | ENGINEERING

7N The Fu Foundation School of Engineering and Applied Science

Challenges

* Dimension scalability.
* Intermediate data caching.
* Interplay among different top-level external and submodule internal control signals.

e User-friendliness.

o Need to manage control signal manually.

Vector Homomorphic Encryption Accelerator & COLUMBIA | EN GINEERING

7N The Pu Foundation School of Engincering and Applied Scict

Lesson Learned

Simplify pipeline logic for Avalon bus communication.

Might be easier to use shared SDRAM rather than implementing memory blocks from scratch so

that intermediate results can be more easily cached with SDRAM on hardware.

Figure out what to put on registers is important and might make life much easier and avoid

evoking too many syscalls.

Vector Homomorphic Encryption Accelerator &5 COLUMBIA | ENGINEERING

7N The Pu Foundation School of Enginecring and Applied Science

