ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022

Project Proposal: A FPGA accelerator for YOLO
CNN based on weight quantization and data flow
optimization

Botong Xiao bx2197, Haoran Jing hj2588, Terry Zhang tz2477, Yunran Zhou yz3985

Abstract—Real-time object detection requires high throughput
and power efficiency. However, many convolutional neural net-
works (CNNs) have frequency access to off-chip memory which
causes slow processing and undesired power dissipation. In this
project, we want to implement a streaming hardware acceler-
ator with a YOLO(You-Only-Look-One) CNN. In addition, the
parameters of the CNN will be quantized using binary weight
and low-bit activation. Quantization would allow us to store the
whole CNN in the on-chip block DRAM. Moreover, the hardware
implementation of the CNN will be fully pipelined to improve
hardware utilization and reusability of intermediate data. In all,
the goal of this project is to eliminate off-chip memory access,
improving hardware utilization to better throughput and energy
efficiency.

I. INTRODUCTION

EEP learnging has been the most prevalent method in

various task in computer vision due to the support of
powerful computation devices such as GPU. Among the state-
of-the-art methods, YOLO and the subsequent Sim-YOLO,
YOLO-V2 demonstrate the most promising trade-off between
speed and accuracy. While GPU is widely used for the training
and inference of deep learning algorithms such as YOLO,
recent researches have proved its inefficiency in optimization
such as the the quantization of weight/activation and data
access schedule. For instance, [2] has demonstrated that the
training and inference of CNNs can be quantized to a very
low-bit precision with insignificant loss in accuracy. This
quantization enables a fast , memory efficient, and power
efficient FPGA accelerator.

Based on this, [1] proposed a optimized data path to reduce
the frequency of off-chip memory access. In this project, we
target to replicate the design of [1]. In the following sections,
the hardware and software are explained in detail. Milestones
of this project is listed in the last section.

II. SPECIFICATION

Fig.1 presents the overall architecture of the whole FPGA
implementation. The data will be input from peripherals such
as the camera through PCIE. Then the data will directly be
sent to the DRAM through the YOLO DMA. The accelerator
will fetch the input image data from the DRAM and perform
the computation and then send the detection result back to
the DRAM. Eventually, the detection result will output from
the DRAM and be sent back to other peripherals such as
the monitor through PCIE. The main design idea and details

will be illustrated in hardware specification and software
specification as follows.

A. Hardware Specification

The YOLO accelerator mainly consists of a controller,
convolution layers, and buffers between each layer. Each
convolution layer consists of three layers performing convo-
lution computation, batch normalization, and max pooling,
respectively.

VC707 FPGA board

e Control
oma | 1 & | nput buffer

" Status -
o convi | ... convi7
PC

YOLO accelerator

Batch Max
|CONV H Norm l_’l pooling

PCIE

Write Input lmngeI& Read Output Detection|

Input Image

‘ DRAM |

Fig. 1: The Streaming Architecture

The overall proposed structure of the YOLO accelerator
is shown in Fig.2. The data input from the previous layer
will first be stored in a circular buffer. The circular buffer
includes four lines of SRAM. Three of them are the partial
inputs from the previous layer and will be divided into sliding
cubes and performed 3x3 convolution with the 3x3 kernel.
Another additional line is to enable the overlapping of the
computation of the current layer and the previous layer. The
partial output result of convolution will be sent to the adder
tree which consists of two stages of ternary adders. The partial
results from adders will be stored in the line buffers, and be
sent to perform batch normalization and max-pooling when the
computation is completed. Eventually, the final results will be
transferred to the next layer and sent back to the DRAM after
output from the last convolution layer.

B. Software Specification

For the software part, our initial thought of the program will
roughly mainly focus on 3 parts: I/O interface, accelerator and
user interface. At the I/O interface part, the software needs
to make the connection to the hardware, which means there
should be an interface for the camera for object detecting, an
interface for video output, making those devices communicate
and transfer data. The second part is the accelerator, containing

ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022

To Processing Elements (PE)

Sliding | ikernels p.olined Adder Tree

cube L
3x3
N
kernel

Circular buffer

Partial
input

Line buffer

rtial
oftput

N W Bw
o |) ey b

weights

Concatenate

BatchNorm H

Fig. 2: FPGA implementation of convolutional layers

N-Channel input Image
M N-Channel

N .
Filters s
/ L
;
—
H 2. L
Accumulation v output
channels

Fig. 3: Operation of convolutional layers

the convolution layer and buffer which has mentioned above.
The work for software is to create those buffers from RAM
and also for the algorithm of the accelerator algorithm. The
basic principle of the CNN network is shown below at left:

For the CNN network, weight must be used for learning,
which could cause a lot of computational resources. Our plan
is to calculate the weight off-board, then add the weight to
the FPGA. Due to limited RAM resources, those algorithms
need optimization in order to make room for buffer. Our plan
is to use the method from [1] to reduce the weight re-use,
the abstract method from [1] is shown above at right. After
optimization, we should be able to put the buffer and algorithm
onto the FPGA RAM. And the last part is the user interface.
Because it is a project for object detection, it should have
a direct image or video output to show the result of the
object detection on a screen. Users can choose to activate and
deactivate the function, where the object detected should be
highlighted and labeled.

III. MILESTONES

TABLE I: Milestones

Fully understand the CNN algorithm Mar. 4

Design the RTL implementation for the accelerator Apr. 22
Verify the accelerator RTL implementation functionality Apr. 29
Develop the software to connect the accelerator with peripherals | May. 6
Perform verification for the whole design May. 13

REFERENCES

[1] D. T. Nguyen, T. N. Nguyen, H. Kim and H. Lee, ”A High-Throughput
and Power-Efficient FPGA Implementation of YOLO CNN for Ob-

- @ ® =
H Sliding cube To
Block To To-channel output
N
Input feature-maps Weight Blocks
(a)

H |

(7= &
T Sliding cube @
Block Tol
N M

Input feature-maps

T
. o
Weight Blocks Output feature-maps buffer

(b)
Pa—
H ZO Block1@m,‘% |
FLP (9o ol 5%
- - 1 |
H Ti Sliding cube ;
Block To 4 /'/
N
Input feature-maps Weight Blocks To line buffers
(©)

Fig. 4: Different streaming schedule (a) No weight reuse (b)
Full weight reuse (c) Line based weight reuse

ject Detection,” in IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 27, no. 8, pp. 1861-1873, Aug. 2019, doi:
10.1109/TVLSI.2019.2905242.

D. T. Nguyen, H. Kim, H. -J. Lee and I. -J. Chang, ”An Approximate
Memory Architecture for a Reduction of Refresh Power Consumption
in Deep Learning Applications,” 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), 2018, pp. 1-5, doi: 10.1109/IS-
CAS.2018.8351021.

(2]

	Introduction
	Specification
	Hardware Specification
	Software Specification

	Milestones
	References

