ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022

The Design Document

Botong Xiao bx2197, Haoran Jing hj2588, Terry Zhang tz2477, Yunran Zhou yz3985

I. INTRODUCTION

N FPGA accelerator for YOLO CNN based on weight

quantization and data flow optimization In the computer
vision area, object detection is a challenging task. This project
is aiming to design an accelerator for YOLO(You-Only-Look-
One) CNN on the FPGA board. The YOLO is a single neural
network predicting the object bounding boxes which perform
the best trade-offs between accuracy and latency. The whole
design idea will be illustrated in hardware and software parts
separately.
For the software part, it is mainly responsible for interacting
with the environment. To be more specific, it will first receive
the image data from the camera through the USB port. Then
the software part will manage the input data in a specific
way and stream them into the accelerator through the device
driver. After the computation by the accelerator, the results
will be retrieved and sent back to the software part and
performed post-processing. Eventually, the detection results
will be shown on the screen through a VGA port.
For the hardware part, it consists of 17 convolution layers
and 4 max-pooling layers. Each convolution layer includes
adder trees to perform the convolution computation and
an accumulator to perform the batch normalization. The
parameters for batch normalization and convolutional kernels
can be computed ahead and preloaded into the DRAM. The
weights we use in this network are in binary which takes
only 1 bit and most of the output and intermediate results
are quantized to 6bits, therefore the memory resource on
FPGA is able to fit all the parameters preloaded. As a result,
all the computation will be performed on-chip, and there is
no necessary to access data off-chip. The memory resource
budget will be illustrated more specifically in section 4.

II. BLOCK DIAGRAM

The approximate block diagram of our design is shown in
Fig.1. To make a project for object detection, we decided to
use a USB camera for image sensing. The video data coming
from the camera will be cut into frames by the driver, then
sent to the CNN driver through the Avalon bus. Then software
streaming logic should present as YOLO Accelerator in the
FPGA hardware, which can process the incoming data in
multiple layers to achieve YOLO-CNN implementation. The
output data will be sent to the VGA port, connecting a VGA
monitor to indicate the final object detection result.

The main feature of the hardware part is the YOLO CNN
accelerator. The YOLO accelerator contains an input buffer,
a controller, DRAM, and multiple convolution layers. There

are 21 layers, which contain 4 max-pooling layers and 17
convolution layers in our design. In each convolution layer,
there are 3 sub-layers performing convolution computation,
batch normalization, and max pooling. For the previous
convolution layer, its input will be sent to a circular buffer
for storage. These buffers include 4 lines of SRAM, where 3
of them are partial inputs from the previous layer, performing
3*3 convolution with the 3*3 kernel. The remaining line is
for overlapping computation. The partial output will be sent
to an adder, where the results are then stored in the line
buffer for batch normalization and max-pooling computation.
The final results are transferred to the next layer until the
overall layer computation finishes. In the batch normalization
part, the activations also need to be shifted and quantized to
get the partial output.

The main job of the software side is to provide the correct
data flow for the whole system: from camera input to CNN
accelerator then to screen output. The first part is the drivers
mentioned in the block diagram. The YOLO CNN driver
will read and write the actual data stored in the buffer and
make convolution computations. A camera driver should have
the function of recognizing the USB protocol for data input.
At last, when the CNN network has finished its processing,
the output data flow was received and shown properly by
the VGA screen driver, whose main function is to convert
the output data into the VGA signal that the monitor could
handle. As a result, we can obtain the real-time image of the
camera with CNN processed object-detection boundaries.

The optimized streaming protocol is shown in Fig.2.
We first use preload weight data and batch normalization
parameters into on-chip memory. Then, we will be using
a USB video camera to capture the frame data. The frame
data of the camera will be communicated to the FPGA board
using the UVC protocol.

After the frame data is successfully transmitted. A CNN
device driver will stream the data into the CNN accelerator
block by block. To increase scalability and maximize
intermediate data reuse, our CNN will compute the data
in a special streaming order. The software will stream the
frame data in the following way to ensure correct functionality.

In the input feature map, The number of channels is N. In
our case, the frame input from the camera has three channels:
RGB. The sliding cube indicates the data being sent to the
Yolo CNN accelerator. As we can see from the graph, data is
passed in along the width of the whole frame data. When the
first horizontal layer that has height k is passed, we move on
to pass the next horizontal layer. After the CNN accelerator

ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022

YoLo
Accelerator

Output

Control

WGA Screen
Driver

&Status

[coNv Haat:h-l\lmm Ma:-pnuling]

1V

[input buffer chnvoluhun Layer}”mm

processed
mage

VGA
Output

VGA Screen
|

J n Layers

1

Hardware

Software

data streaming logic

input peripheral

Avalon Bus

CNN driver

read_next_frame

video_decode

next_data_block ‘

camera

USB Input

Frame input

camera driver

Fig
L s v Block 1@ |
IK y / ® iz
| : —-&—. To !
H Ti Sliding cube i
Block To i
N

Input feature-maps Weight Blocks To line buffers

Fig. 2: Data flow

finishes inferencing, the output will be communicated directly
to the monitor screen using VGA protocol. Through raster
scanning, the monitor will show the input frame with the
detected object enclosed in a square.

III. ALGORITHMS

The main algorithm of the accelerator is to implement
convolution computation and max-pooling. The pseudo-code
for the convolution layer and max-pooing layer is shown in
Fig.3.

In each convolution layer, the convolution computation is
always followed by batch normalization. The original batch
normalization is shown below.

79 (act —)
O +e
where y and act are the outputs of batch-normalization

and convolutional computation, respectively. (i), [o(i)]? are
channel-wise mean and variance of activations, respectively.

y = + 8% (1

. 1: Block diagram

Algorithm 1: Pseudo code for original convolution layer
in[N][H][H]: input images (N channels)
W[M][N][K][K]: weight
out[M][H][H]: output images (M channels)
for oc =0; oc < M; oc++ do
forr=0;r<H; r++do
forc=0;c<H;c++do
foric=0;ic < N;ic++ do
fori=0;i<K;i++do
forj=0;j<K; j++do
outfoc][r]fc] += W]oc][ic][i][j] * in[ic][r+i][c+];

Algorithm 2: Pseudo code for original 2x2 max-pooling layer with
stride =2
in[N][2*H][2*H] : input images (N channels)
out[N][H|[H] : output images (N channels)
forr=0;r<H; r++do
forc=0;c<H;c++do
foric = 0; ic < N; ic++ do
outfic][r][c] = max(infic][2*r][2*c],
infic][2*r+1][2*c], infic][2*r][2*c+1],
infic][2*r+1][2%c+1]);

Fig. 3: Algorithm

~(¢) and /3(7) are the channel-wise scale and bias, respectively.
However, the original batch normalization is not easy for

the hardware to implement. Therefore, the batch normalization
has been optimized as below:

2

where yw(i) and Sw(i) are the new scale and bias factiors

Y =Tw() X 7D + BE

ELEN 4840 - EMBEDDED SYSTEM, FALL SPRING 2022

that can be computed beforehand by the software part and
preloaded into the DRAM of FPGA:

o = w37 (3)
Y [0(®]2 + €
(1) (i)
) — _ HPw XHE T 0 4
Bu o0 e B @)

With the optimized batch normalization and preloaded
scale and bias factors, the accelerator only requires one
multiplication and one addition to perform the batch
normalization.

For the software part, in addition to the scale and bias
factors computation mentioned before, it will also implement
the algorithm written in C language to build a golden block
for the whole design. The actual hardware implementation
may perform some quantization for the activation to save the
hardware resource consumption and eliminate off-chip access,
which may lead to some accuracy loss. But the software still
could use the simple and original version of algorithm to
build a golden block. By analyzing the results of the golden
block and accelerator, we can identify whether the accuracy
of accelerator output is acceptable and therefore verify the
correctness of the accelerator.

IV. RESOURCE BUDGET

The FPGA resource used in this accelerator is reported in
[1]. The network structure, weight size, LUT and FF resource
budget are Shown below.

Size / | Filter |Out bit| PF***
Layer{Type| Stride lumber Input Size | Output Size width |(Ti, To)
0 | C*|3x3/1 32 416x416x3 [416x416x32| 6 (3,32)
1 |M**[2x2/2 416x416%32 | 208x208x32| 6 (8,8)
2 | C*|3x3/1 64 |208x208x32|208x208x64| 6 (8,8)
3 M 2x2/2 208x208x64 | 104x104x64| 6 N/A
4 | C*|3x3/1| 128 |104x104x64 [104x104x128| 6 (8,8)
5 |C*[1Ix1/1 64 |104x104x128| 104x104x64| 6 (8,8)
6 | C*|3x3/1| 128 |104x104x64 [104x104x128| 6 (8,8)
7 |M*F| 2x2/2 104x104x128[52x52x 128 6 N/A
8 | C* [3x3/1] 256 | 52x52x128 | 52x52x256 6 (8,8)
9 [C*|1Ix1/1] 128 | 52x52x256 | 52x52x128 6 (8,8)
10 [C*|3x3/1| 256 | 52x52x128 | 52x52x256 6 (8,16)
11 [M**|2x2/2 52x52%256 | 26x26X256 6 N/A
12 [C*|3x3/1| 512 | 26x26%256 | 26%26x512 6 (16, 8)
13 | C* | Ix1/1| 256 | 26x26%512 | 26x26%256 6 (8,16)
14 [C*|3x3/1| 512 | 26x26%256 | 26%26x512 6 (16, 8)
15 [C* | Ix1/1| 256 | 26x26x512 | 26%26%256 6 (8,16)
16 | C* |3x3/1 | 512 | 26x26%256 | 26x26%512 4 (16, 8)
17 [M**|2x2/2 26x26x512 | 13x13x512 4 N/A
18 [C* |3x3/1| 1024 | 13x13x512 |13x13x1024| 6 (8,16)
19 [C* | Ix1/1| 512 |13x13x1024| 13x13x512 4 (16, 8)
20 [C* | 3x3/1 | 1024 | 13x13x512 | 13x13x1024| 6 (8,16)
21 [C* | Ix1/1| 125 |13x13x1024] 13%x13x125 16 [(16,5)

Note: C*=Convolution, M**=Maxpool, PF***= Parallelism Factors

Fig. 4: The network structure and the weight quantization

[1] implemented the accelerator with a different FPGA
devices but we anticipate a similar amount of resource will
be used in this project.

Networks Quantization ACE;: Y Si‘;:c(lﬁl;];) Co(rgg;};lty
Full precision 75.88 258 349
(1) Y‘gLO | 1-bW,32-bA 71.56 8.1 17.45
1-b W, 6-bA 71.11 8.1 17.45
(2) Sim- Full precision 72.0 79.74 18.95
YOLO-v2 1-b W, 32-b A 66.99 2.54 9.48
1-b W, 6-bA 65.76 2.54 9.48
) Full precision 66.79 58.28 17.18
o | 1bW.32bA | 6495 188 8.59
V2 FPGA 1-b W, 6-b A 65.07 1.88 8.59
1-b W, 4-to-6-bA| 64.16 1.88 8.59

Fig. 5: weight size w/ and w/o quantization

Features Performance w/o Performance w/
batch batch
Device Virtex-7 VC707 FPGA

200 MHz
1144 (55.5%)

Operating frequency
Block RAMs (18 Kb)

DSPs 272 (9.7%)
LUTs — FFs 155.2K (51.1%) — 115K (18.9%)
mAP 64.16%
DRAM bandwidth 47.2 MB/s 84.96 MB/s
Frame rate (416 x 416) 60.72 fps 109.3 fps
Throughput 1043 GOPS 1877 GOPS
Power 11.11 W 18.29 W

Fig. 6: Implementation results from [1]

V. HARDWARE-SOFTWARE INTERFACE

Since the only interaction between our CNN accelerator
and the software side is one-way data passing, the Hardware-
software interface is straightforward, the data and control
signals are passed using an Avalon bus. Since we will
be implementing real-time object detection, we will use
h2f axi_master to transport data ensuring data throughput.
Each pixel has 8*3 bits (8 bits for each of the 3 channels).
Each data transmission will contain 256 bits, or 32 pixels to
fully utilize the data width of axi_master.

REFERENCES

[1] D. T. Nguyen, T. N. Nguyen, H. Kim and H. Lee, "A High-Throughput
and Power-Efficient FPGA Implementation of YOLO CNN for Ob-
ject Detection,” in IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 27, no. 8, pp. 1861-1873, Aug. 2019, doi:
10.1109/TVLSI.2019.2905242.

[2] D. T. Nguyen, H. Kim, H. -J. Lee and L. -J. Chang, ”An Approximate
Memory Architecture for a Reduction of Refresh Power Consumption
in Deep Learning Applications,” 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), 2018, pp. 1-5, doi: 10.1109/1S-
CAS.2018.8351021.

	Introduction
	Block Diagram
	Algorithms
	Resource Budget
	Hardware-software interface
	References

