DUCK HUNT 22

Design Document

Kristen Shaker (kls2243)
Alex Yao (awy2108)
Bryce Natter (bdn2113)

We are recreating the classic NES game “Duck Hunt.” The premise of the game is that ducks
are introduced from the bottom of the screen and fly in a randomized pattern. The player has
three shots to hit the ducks. After shooting all three bullets, the state resets and new ducks are
introduced. We will use a Wii remote to control the position of a crosshair on the screen
displayed by the VGA. If a player successfully positions the crosshair over a duck and clicks the
trigger, they have successfully shot the duck. The player score will be computed from the
number of ducks shot in a single game instance, and we will incorporate varying game

difficulties.

We will be using tile and sprite graphics to display our visuals. The game logic and input will be
handled by software. We will prioritize making a functional Wii remote controller for our game,
which will communicate to the FPGA via Bluetooth. The software will communicate coordinates

and game state to the hardware for display on a screen.

OVERVIEW

Wii
remote

wii_remote.c

S
0
F Main.c
T update_score{)
W 05 Driver shoat()
star_new_round()
A
R
E
Avalon Bug
H
DUCK

A GAME
R wr_data[31:8]

— VoA _R[7:8]
D |write VA B[7 -]
W [Gadr(a.a] REEEEZEL Sprite CDn:rGuAller vGA Gl7:6]

3 Vi _CLK
Eng = VGA_BLANE _n
A clk VOA_5YNE_n
R reset
E
BRAM

HW/SW Interface

Register Table

Offset Bits Name Description

0x000 [1:0] GameState Controls
background for
displaying start
screen (@), game
(1), and game

over (2).
0x020 [31:0] Score Current Score
0x040 [31:0] Bullets Number of
Remaining Bullets
0x060 [31:0] Round Current Round
0x080 [19:10] Crosshair X X and Y location
[9:0] Crosshair Y of crosshair
Ox0A0 [24:20] D1 Sprite Control
[19:10] D1 X parameters for
[9:0] D1 Y duck 1
0x0Do [24:20] D2 Sprite Control
[19:10] D2 X parameters for

[9:0] D2 Y duck 2

Algorithms

The core game logic and game state will be updated through control algorithms on the software
side. The main states we keep track of during gameplay are:

e Game state (score, round, bullets remaining, ducks hit)

e Duck states (position, velocity vector, sprite option)

e Crosshair position

Game state - The main game loop will be responsible for tracking the gameplay in one
instance. On game over, the loop will reset all states for a new playthrough. The game state we
track during gameplay are the scores (increasing by multiples of 500 as ducks are shot), bullets
remaining (from 3), round (increasing after each set of ducks), and total ducks hit (used for
display). The score displays are communicated over to hardware for display.

Duck states - Each duck state encapsulates the information that should be communicated to
the hardware during each frame (position, sprite option) as well as some meta information about
the velocity of the duck. This provides sufficient information to determine duck position at the
next frame. E.g. If the duck has been shot, decrease Y position and display “dead” sprite.

Crosshair position - This information is polled from the Wii remote controller during each pass
and checked for collision with ducks that are not dead or inactive. We note that there is required
setup before the main game loop to sync the Wii controller for accurate positions.

We have produced the following pseudocode which captures the general interfaces,
components, and main function logic of our program:

enum duck_state { flap_up, flap_down, dead, inactive };

typedef struct {
unsigned int x,y;
unsigned int vx, vy;
unsigned int value;
duck_state state;

} duck_config_t;

typedef struct {
unsigned int x,y;

s

typedef struct {
unsigned int bullets, score, round;
} game_config_t;

// Calculates hit-square associated with the x,y position of the duck. returns 1 if
wii controller x, y coordinates are in the hit-square.
int shoot(duck_coord_t * coord);

// called during game initialization. set number of bullets to three, score to zero
and round to 1.

int set_up_config(game_config t * config);

// called when a player shoots or when a round is over.
int update_game_config(game_config t * config);

// uses ioctl calls to tell our driver to update the coordinate of the duck.
int write_duck_coord(duck_config t * config);

// uses ioctl calls to tell our driver to update the state of the duck.
int write_duck_state(duck_config_t* config);

int poll_wii_controller();
int main() {
// sync Wii remote locations

while(1){
play_game();

int play_game(){
// setup logic, send stuff to hardware

duck_config_t duck;
game_config_t game;
set_up_config(&game);
while (1) {

// poll for x,y values and trigger press

poll wii();

if(is_game_over())

{

return;
}
if(trigger_pressed){
if(shoot_duck()){
update_duck_state(); // change duck state to dead;
game.score += duck.value;
}
game.num_bullets -= 1;

}

// Note: ducks below location Y on screen are hidden behind bush sprites

// compute location of ducks

move_duck(&duck);

update_game_config(&game); // ioctl calls to update hardware
write_duck_coord(&duck);

}

return 0;

Resource Budget

Category Image Size (pixels) Variants Total Bits

Duck 40 x 34 3 3*40*34*4 =
16,320 bits

Bullet 16 x 16 1 1*16*16*4 =
1024 bits

Background 16 x 16 8 8*16*16*4 =
8192 bits

Score (numbers) 16 x 16 10 10*16*16* 4
= 10240 bits

Ducks Counter 16 x 16 1 1*16*16*4 =
1024 bits

Color Pallet 10 * 24 = 240
bits

Total Memory: 37040bits = 4.63 kB

