
COMS 4995 Parallel Functional Programming FInal Report
TSP - Traveling Salesman Problem

Submitted by - jcs2281, sb4443

Introduction
The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, that
means that no exact algorithm can solve it in polynomial time. The method that would definitely
obtain the optimal solution of TSP is the method of exhaustive enumeration and evaluation. This
procedure begins by generating the possibility of all the tours and evaluating according length or
cost of the tour. The tour with the smallest length or cost chosen as the best, and guaranteed to
be optimal. TSP is prevalent in real-world scenarios and researchers and companies are
working on resolving cases of TSP and finding an optimal solution. One example is the delivery
service, a courier needs to deliver goods to customers with different destinations and time is of
considerable concern in delivery of goods as it relates to the reputation of the company. To
reach the target requires a system capable of providing an optimal travel route so that the travel
time can be minimized. In this project, we are trying to use the parallelization supported by
haskell to see if parallelization can speed up the algorithm or improve it over its sequential
implementation. We are using brute-force technique where we are trying out all possible orders
lexicographically and Genetic algorithm approximation and analysing the performance
difference between parallel and sequential implementation.

Problem formulation
The Travelling Salesman Problem (TSP) is the challenge that can be defined as follows:
consider a number of cities which must be visited by a traveling salesman, only once, arriving
once and departing once and starting and ending at the same city. Given the pairwise distances
between cities, what is the best order in which to visit them, so as to minimize the overall
distance traveled?

It is a well-known algorithmic problem in the fields of computer science. There are obviously a
lot of different routes to choose, but finding the best one; the one that will require the least
distance or cost is what researchers have spent decades trying to solve for.

It has commanded so much attention because it’s so easy to describe it yet difficult to solve.
The complexity of calculating the best route will keep on increasing when we add more
destinations to the problem. That’s why TSP belongs to the class of combinatorial optimization
problems known as NP-complete. This implies that it is classified as NP-hard as it has no
“quick” solution.

Example solution of a travelling salesman problem - the black line shows the shortest possible
loop that connects every red dot:

https://en.wikipedia.org/wiki/NP-hardness

Applications
1. Overhauling gas turbine engines: To guarantee a uniform gas flow through the

turbines there are nozzle-guide vane assemblies located at each turbine stage. Such an
assembly basically consists of a number of nozzle guide vanes affixed about its
circumference. All these vanes have individual characteristics and the correct placement
of the vanes can result in substantial benefits. The problem of placing the vanes in the
best possible way can be modeled as a TSP with a special objective function.

2. Order Picking problem: This problem is associated with material handling in a
warehouse. Assume that at a warehouse an order arrives for a certain subset of the
items stored in the warehouse. Some vehicles have to collect all items of this order to
ship them to the customer. The relation to the TSP is immediately seen. The storage
locations of the items correspond to the nodes of the graph. The distance between two
nodes is given by the time needed to move the vehicle from one location to the other.
The problem of finding a shortest route for the vehicle with minimum pickup time can
now be solved as a TSP.

3. Vehicle Routing: Suppose that in a city n mail boxes have to be emptied every day
within a certain period of time, say 1 hour. The problem is to find the minimum number of
trucks to do this and the shortest time to do the collections using this number of trucks.

Implementations

● Brute Force sequential
In the brute force sequential approach we first enumerate all the possible permutations
of the paths and calculate the distance of each possible path one after the other by
traversing across the collected path one by one and picking the shortest one. This is an
exhaustive search as we are searching over a large space. That’s this algorithm has
exponential time complexity.

● Bruteforce, calculate path distance in parallel
In the brute force approach, we first enumerate all the possible permutations of the paths
as we did in sequential and then create sparks for each one of them to get calculated in

parallel and pick the shortest one. This is still an exhaustive search as we are searching
over a large space but with a small reduction in search space as we are involving more
than one core to perform this parallelization.

● Bruteforce, calculate path distance in parallel with Chunk size
In the parallel brute force approach, rather than enumerate all the possible path
permutations and then create sparks for each one of them we first divide them into a
fixed chunk and then run these chunks in parallel and pick the shortest one.

● Bruteforce for a batch of city groups
In this approach, we read an input file, replicate it a user-specified number of times, and
then randomize them. Once we have got b batches we run the sequential algorithm over
these b batches in a similar fashion as the naive brute force approach.

● Bruteforce for a batch of city groups, each group in parallel
In this approach also, we first generate an infinite random number List between a list of
empty length and the maximum number of cities as we did for the sequential batch
algorithm. Once the random list is generated we pick the first b number from this random
list and these b numbers for the batches from the city corpus. Now rather than running
this algorithm for b batches in a sequential fashion we use Haskell parallelization to run
them in parallel and choose the minimum cost path.

● Genetic Algorithm with Population Size and Number of Generations
In the algorithm, we treat cities as genes, a single path that gets generated using these
characters or problem constraints known as chromosomes, and a fitness score which is
inversely proportional to the squared path length. The smaller the path length gene is,
the fitter it is. The fittest of all the genes in the gene pool survive the population test and
move to the next iteration. The number of iterations depends upon the value of a cooling
variable. The cooling variable value keeps decreasing with each iteration and it reaches
a threshold after a fixed number of iterations.

● Genetic Algorithm for a batch of city groups
Here we replicate and randomize an input file to generate a batch of problems just like
done before for the sequential batch processing. Once we have got b batches, we run
the genetic algorithm defined earlier over these b batches in a sequential fashion and
find the minimum cost path.

● Genetic Algorithm for a batch of city groups, each group in parallel
This algorithm performs the same initial step as its sequential implementation defined
earlier but it executes the genetic algorithm in batches parallelly similar to the brute force
approach.

Performance Analysis

Approach Number of
Core

Time
Taken(secs)

Sequential 1 10.546

Parallel 1 86.59

Parallel 4 58.413

Parallel 8 28.431

The sequential algorithm seems to be doing better than the parallel implementation. Therefore
we look at threadscope and the number of sparks to see what the issue is:

4 core

8 Core

27,287,373,552 bytes allocated in the heap
8,660,023,944 bytes copied during GC
1,218,827,432 bytes maximum residency (27 sample(s))
1,622,514,520 bytes maximum slop

4915 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 14488 colls, 14488 par 29.908s 13.102s 0.0009s 0.0034s
Gen 1 27 colls, 26 par 12.141s 4.546s 0.1684s 1.1028s

Parallel GC work balance: 1.21% (serial 0%, perfect 100%)

TASKS: 18 (1 bound, 17 peak workers (17 total), using -N8)

SPARKS: 39916800 (39872098 converted, 44702 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.000s (0.003s elapsed)
MUT time 85.721s (11.171s elapsed)
GC time 42.049s (17.649s elapsed)
EXIT time 0.000s (0.006s elapsed)
Total time 127.771s (28.829s elapsed)

Alloc rate 318,327,269 bytes per MUT second

Productivity 67.1% of total user, 38.7% of total elapsed

The run is spending a lot of time doing garbage collection which is overpowering any gain got by
the parallelization. To overcome this, we divide the parallelization into chunks so as to not
overwhelm the processors with too many sparks at once. This seems to improve performance
over the normal parallel implementation.

Dividing path calculation in chunks:

Method Number of
Core

Chunk Time
Taken(secs)

Parallel 1 1024 73.40

Parallel 4 1024 21.427

Parallel 8 1024 15.323

4 Core

8 Core and 1024 chunk

34,964,115,760 bytes allocated in the heap
14,978,086,504 bytes copied during GC

913,065,696 bytes maximum residency (37 sample(s))
10,393,888 bytes maximum slop

2416 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 21932 colls, 21932 par 39.448s 11.825s 0.0005s 0.0090s
Gen 1 37 colls, 36 par 11.952s 1.834s 0.0496s 0.2569s

Parallel GC work balance: 62.58% (serial 0%, perfect 100%)

TASKS: 18 (1 bound, 17 peak workers (17 total), using -N8)

SPARKS: 38982 (38982 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.001s (0.003s elapsed)
MUT time 15.361s (4.596s elapsed)
GC time 51.400s (13.658s elapsed)
EXIT time 0.000s (0.009s elapsed)
Total time 66.761s (18.266s elapsed)

Alloc rate 2,276,218,926 bytes per MUT second

Productivity 23.0% of total user, 25.2% of total elapsed

Method Number of
Core

Chunk Time
Taken(secs)

Parallel 8 1 35.772

Parallel 8 4 23.727

Parallel 8 8 21.946

Parallel 8 16 27.513

Parallel 8 32 22.304

Parallel 8 64 24.741

Parallel 8 128 14.188

Parallel 8 256 17.628

Parallel 8 512 13.900

Parallel 8 1024 15.323

Parallel 8 2048 29.232

Parallel 8 4096 30.732

The best result is achieved for a chunk size of 512 on 8 cores.

8 Core and 512 chunk

After this analysis, we realize that calculating the euclidean path distance for a set of
coordinates is not a very heavy task by itself and therefore parallelizing the calculation of
multiple paths at once does not benefit us much.

Therefore, next we try to calculate the minimum path distance for multiple city groups at once.

Analysis of City Groups in Batches

Method Number of
Core

Batch Size Time Taken(secs)

Sequential 1 1 9.588

Sequential 1 10 11.030

Sequential 1 128 129.58

Parallel 1 10 10.449

Parallel 4 10 12.592

Parallel 8 10 13.848

Parallel 1 128 139.73

Parallel 4 128 48.581

Parallel 8 128 37.542

4 Core and 128 batches of city group

8 Core and 128 batch of city groups

Since calculating the entire tsp min distance path for a set of cities is a much more intensive
task than calculating one euclidean path. Therefore we see that these batch computations
greatly benefit by parallelization. For a batch of 128 city groups, we see a speedup of 3.45x
when we move to batches of city.

Genetic Algorithm and Parallelization Analysis:

Method Population
Size

Generations Input Size
(Number of
cities)

Min distance
found
(actual = 12)

Time
Taken(secs)

Sequential - - 12 12 10.476

Genetic 32 32 12 12 0.322

Here we can see that the Genetic Algorithm has a speedup of 32.53x over the sequential
algorithm while giving the same answer.

Method Population
Size

Generations Input Size
(Number of
cities)

Min distance
found
(actual = 12)

Time
Taken(secs)

Genetic 16 1 12 15 0.309

Genetic 16 4 12 14 0.314

Genetic 16 8 12 13 0.305

Genetic 16 16 12 13 0.312

Genetic 16 32 12 12 0.308

Keeping the population size constant at 16, we see that the accuracy increases as the number
of generations increases and we get the optimal solution after 32 generations.

Method Population
Size

Generations Input Size
(Number of
cities)

Min distance
found
(actual = 12)

Time
Taken(secs)

Genetic 4 8 12 17 0.308

Genetic 8 8 12 14 0.307

Genetic 16 8 12 13 0.310

Genetic 32 8 12 12 0.312

Keeping the number of generations constant at 8, we see that the accuracy increases as the
population size increases and we get the optimal solution with a population size of 32.

Method Population
Size

Generations Input Size
(Number of
cities)

Min distance
found
(actual =
102)

Time
Taken(secs)

Genetic 16 16 102 216 0.339

Genetic 32 32 102 213 0.586

Genetic 64 64 102 161 3.067

Genetic 128 128 102 112 19.198

For a very large input size (102 cities), solving it by brute force is infeasible as we would need to
calculate (101)! possibile path distances. However we are able to calculate a reasonable
approximation 112 to the actual min distance of 102 within reasonable time using the genetic
algorithm. Above, we see that accuracy increases as population size and number of generations
increases.

Genetic Algorithm in batch analysis over big input

Method Population
Size

Generations Batch Size Num of Core Time
Taken(secs)

Genetic 128 128 1 1 19.193

Genetic 128 128 10 1 80.40

Genetic
batch
parallel
processing

128 128 10 1 78.87

Genetic
batch
parallel
processing

128 128 10 4 25.806

Genetic
batch
parallel
processing

128 128 10 8 26.524

We parallelize the calculation of a batch of 10 groups using the genetic algorithm, each having
about 102 cities. We see a speedup of 3.03x by parallelizing the batch processing.

8 Core with batch size 10 over population size of 128 and 128 generations

Conclusion

Calculating the euclidean path distance for a set of coordinates is not a very heavy task by itself
and therefore parallelizing the calculation of multiple paths at once does not benefit us much.
Dividing the parallelization into chunks helps reduce the number of sparks and garbage
collection.
Since calculating the entire tsp min distance path for a set of cities is a much more intensive
task than calculating one euclidean path. Therefore we see that these batch computations
greatly benefit by parallelization. For a batch of 128 city groups, we see a speedup of 3.45x
when we move from sequential to batch algorithms.
We also see that the Genetic Algorithm has a speedup of 32.53x over the sequential algorithm
while giving the same answer. The Genetic Algorithm also makes it feasible to solve very large
problems which are not possible to be solved by brute force in reasonable time.
We also parallelize the calculation of a batch of 10 groups using the genetic algorithm, each
having about 102 cities and see a speedup of 3.03x by parallelizing the batch processing

Code Listing

Lib.hs
module Lib

(runMain,

)

where

import Control.Parallel.Strategies

import Data.List (permutations)

import GeneticUtils

import System.Environment (getArgs, getProgName)

import System.Exit (die)

import System.IO (readFile)

import Types

import Utils

-- Consider all permutations while keeping starting point fixed

minPathDistance :: [Point] -> Int

minPathDistance [] = -1

minPathDistance (c : cities) =

minimum $

map (pathDistance . (c :)) $

permutations cities

parallelMinPathDistance :: [Point] -> Int

parallelMinPathDistance [] = -1

parallelMinPathDistance (c : cities) =

minimum $

parMap rseq (pathDistance . (c :)) $

permutations cities

chunkedParallelMinPathDistance :: [Point] -> Int -> Int

chunkedParallelMinPathDistance [] _ = -1

chunkedParallelMinPathDistance (c : cities) chunkSize =

minimum $

withStrategy (parListChunk chunkSize rdeepseq)

. map (pathDistance . (c :))

$ permutations cities

batchMinPathDistance :: [[Point]] -> [Int]

batchMinPathDistance = map minPathDistance

batchParallelMinPathDistance :: [[Point]] -> [Int]

batchParallelMinPathDistance = parMap rseq minPathDistance

geneticMinPathDistance :: Int -> Int -> [Point] -> Int

geneticMinPathDistance _ _ [] = -1

geneticMinPathDistance populationSize generations cities =

minimum $ map pathDistance finalPop

where

population = replicate populationSize cities

randomList = randomListInRange 0 (length cities - 1)

finalPop =

fst $

foldr

(\f (p, r) -> (f p r, tail r))

(population, randomList)

(replicate generations nextGen)

batchGeneticMinPathDistance :: Int -> Int -> [[Point]] -> [Int]

batchGeneticMinPathDistance p g =

map

(geneticMinPathDistance p g)

batchParallelGeneticMinPathDistance :: Int -> Int -> [[Point]] -> [Int]

batchParallelGeneticMinPathDistance p g =

parMap

rseq

(geneticMinPathDistance p g)

runMain :: IO ()

runMain = do

args <- getArgs

case args of

-- bruteforce sequential

["-s", filename] -> do

corpus <- readFile filename

print $ minPathDistance $ makeCities corpus

-- bruteforce, calculate path distance in parallel

["-p", filename] -> do

corpus <- readFile filename

print $ parallelMinPathDistance $ makeCities corpus

-- bruteforce, calculate path distance in parallel chunks

["-c", ':' : 'n' : n, filename] -> do

corpus <- readFile filename

print $ chunkedParallelMinPathDistance (makeCities corpus) (read n)

-- bruteforce for batch of city groups

["-s", ':' : 'b' : b, filename] -> do

corpus <- readFile filename

let cities = makeCities corpus

randomList = randomListInRange 0 (length cities)

in print $ batchMinPathDistance [take r cities | r <- take (read b) randomList]

-- bruteforce for batch of city groups, each group in parallel

["-sp", ':' : 'b' : b, filename] -> do

corpus <- readFile filename

let cities = makeCities corpus

randomList = randomListInRange 0 (length cities)

in print $ batchParallelMinPathDistance [take r cities | r <- take (read b)

randomList]

-- genetic algorithm

["-g", ':' : 'p' : p, ':' : 'g' : g, filename] -> do

corpus <- readFile filename

print $ geneticMinPathDistance (read p) (read g) $ makeCities corpus

-- genetic algorithm for batch of city gorups

["-g", ':' : 'p' : p, ':' : 'g' : g, ':' : 'b' : b, filename] -> do

corpus <- readFile filename

let cities = makeCities corpus

randomList = randomListInRange 0 (length cities)

in print $ batchGeneticMinPathDistance (read p) (read g) [take r cities | r <-

take (read b) randomList]

-- genetic algorithm for batch of city gorups, each group in parallel

["-gp", ':' : 'p' : p, ':' : 'g' : g, ':' : 'b' : b, filename] -> do

corpus <- readFile filename

let cities = makeCities corpus

randomList = randomListInRange 0 (length cities)

in print $ batchParallelGeneticMinPathDistance (read p) (read g) [take r cities

| r <- take (read b) randomList]

-- invalid running params

_ -> do

pn <- getProgName

die $ "Usage: " ++ pn ++ " [-s|-p|-c :nN|-s :bN|-sp :bN|-g :pN :gN|-g :pN :gN

:bN|-gp :pN :gN :bN] <filename>"

Types.hs
module Types (Point) where

type Point = (Int, Int)

Utils.hs
module Utils

(distance,

squaredDistance,

makeCities,

pathDistance,

squaredPathDistance,

randomListInRange,

)

where

import System.Random (mkStdGen, randomRs)

import Types

squaredDistance :: Point -> Point -> Int

squaredDistance (x1, y1) (x2, y2) = ((x2 - x1) ^ 2) + ((y2 - y1) ^ 2)

distance :: Point -> Point -> Int

distance a b = floor . sqrt . fromIntegral $ squaredDistance a b

makeCities :: String -> [Point]

makeCities corpus = makePairs $ map read $ words corpus

where

makePairs [] = []

makePairs [p] = [(p, p)] -- replicate last coordinate if odd numbers

makePairs (p : q : r) = (p, q) : makePairs r

pathDistance :: [Point] -> Int

pathDistance cities = sum $ zipWith distance path (tail path)

where

path = last cities : cities

squaredPathDistance :: [Point] -> Int

squaredPathDistance cities = sum $ zipWith squaredDistance path (tail path)

where

path = last cities : cities

randomListInRange :: Int -> Int -> [Int]

randomListInRange s e = randomRs (s, e) rg

where

rg = mkStdGen 0

GeneticUtils.hs
module GeneticUtils (nextGen) where

import Data.List (sortBy)

import qualified Data.Set as S

import Types

import Utils

crossover :: [Point] -> [Point] -> Int -> Int -> [Point]

crossover parentA parentB i j = c1 ++ c2

where

s = min i j

e = max i j

c1 = [x | (x, i) <- zip parentA [0 ..], s <= i && i <= e]

c1Set = S.fromList c1

c2 = [x | x <- parentB, not (x `S.member` c1Set)]

nextGen :: [[Point]] -> [Int] -> [[Point]]

nextGen pop randomList =

take (length pop) $

map fst $

sortBy (\p1 p2 -> compare (snd p1) (snd p2)) $

map (\p -> (p, squaredPathDistance p)) $

[crossover pa pb ri rj

| (i, pa, ri) <- zip3 [0 ..] pop randomList,

(j, pb, rj) <- zip3 [0 ..] pop (tail randomList),

i < j

]

Main.hs
module Main where

import Lib

main :: IO ()

main = runMain

Others
dependencies:

- base >= 4.7 && < 5

- parallel

- random

- containers

ghc-options:

- -O2

- -threaded

- -rtsopts

- -eventlog

References
[1] https://en.wikipedia.org/wiki/Travelling_salesman_problem
[2]
https://www.schoolofhaskell.com/school/starting-with-haskell/libraries-and-frameworks/randoms
[3] https://stackoverflow.com/questions/40097116/get-all-permutations-of-a-list-in-haskell
[4] https://hackage.haskell.org/package/parallel-3.2.2.0/docs/Control-Parallel-Strategies.html
[5]
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e39
6e98d8bf3

