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Abstract

We implemented a Minecraft slime chunk-based seed reverse engineering tool in
Haskell. We parallelized using various methods, achieving approximately 6x speedup
on a 6-core processor. We achieved similar performance results with chunking using
both Strategies with parList and the Par Monad, though overhead starts to domi-
nate with larger numbers of chunks/sparks on parList. We also include other poorer
parallelization techniques on two different sequential algorithms to demonstrate the
impact of the sequential implementation on the parallelization.

1 Background

Minecraft is the best-selling video game of all time. The original game was written in
Java in 2009 by Mojang, with development continuing through its official release in
2011 and up to the present day. The game is set in a blocky, procedurally generated
3D world, in which the player is free to explore, extract and farm resources, build,
and (in multiplayer servers) interact with other players.

The procedural generation of this world is governed by a 64-bit “world seed.” If
the player does not manually enter in a seed, it is randomly generated. Although
the seed is normally accessible to the player, the seed may be inaccessible for various
reasons, such as the world file being lost, the world being on a multiplayer server,
or the world belonging to a streamer or Mojang developer and as a result only ac-
cessible through video (or even just screenshots). Thus, whether out of nostalgia for
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an old now-lost world, a desire to cheat, or as a love project from a fanbase, there is
significant motivation to reverse engineer world seeds.

Brute forcing the 64-bit seed would take thousands of years, and would require
knowledge of the game logic, so at first it would seem that reverse engineering the
seed is an impossible task. However, Minecraft is written in Java. As a result, it has
been fully decompiled, allowing for a complete look at the game code. From this,
we know that Minecraft uses Java’s Random class, which is not very secure. Java
Random uses a linear congruential generator (LCG) with a modulus of 248:

seedn+1 = (25214903917 · seedn + 11) mod 248

Thus, although it takes a 64-bit seed, only the lower 48 bits are used for most gen-
eration. We therefore can attack only these 48 bits independently of the other 16.
Furthermore, because randomly generated seeds also use Java Random (by generat-
ing two 32-bit integers and combining them together), for these seeds the 48-bit seed
actually corresponds to only a single world seed on average, and can be extended to
the 64-bit seed nearly instantly. If using a manually entered seed, the search space
is larger, but can be brute-forced using other generation features which do use the
upper 16 bits.

Although a brute-force attack on a 48-bit integer is feasible (and would take on
the order of hours or days), we can further narrow down the search space by taking
advantage of Java Random’s poor parity. Current state of the art solutions involve
combining various structure generation features to find the world seed, including an
in-game client mod created by KaptainWutax in 2019 which calculates the seed in
real time. One early technique involves the use of slime chunks; this algorithm will
be the focus of this project.

2 Implementation Details

2.1 Explanation of Slime Chunk-Based Algorithm

The slime-based approach to seed reverse engineering was an early proof-of-concept,
developed in 2014 by Tim Goddard and presented at the New Zealand security
conference Kiwicon. An equivalent algorithm was also independently developed by
Badel2 and released in 2017.

Slimes are hostile creatures which spawn underground. Their spawning locations
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are determined by a grid of “chunks” in the world; chunks where slimes can spawn
are called “slime chunks.” When generating any given chunk, the game generates a
seed by adding the world seed to a number generated from the chunk coordinates; if
the random number generated from this seed is divisible by 10, then the chunk is a
slime chunk:

Random rnd = new Random(seed + chunkVal) ^ 0x3ad8025f);

return rnd.nextInt() % 10 == 0;

Our general approach involves collecting slime chunk coordinates, and filtering all
possible seeds by those which which generate a number which is divisible by 10 in said
slime chunks. Because 1015 > 248, 15 slime chunks should be theoretically sufficient
to identify a seed (though with such a low number, the possibility of collisions is high).

Furthermore, we can optimize this solution by noting that all multiples of 10 are
even. We can therefore filter only those seeds which will generate an even num-
ber. It turns out that when using Java Random’s LCG, the lower 18 bits determine
whether the final bit in the resulting number is 0 or 1, and therefore we can first
reduce the search space by filtering the lower 18 bits. Each slime chunk essentially
cuts the search space in half; with approximately 18 slime chunks, it becomes possi-
ble to find a single 18-bit suffix.

In that case, we are left with only 48 − 18 = 30 bits left to brute-force, which
will provide us with anywhere from a handful to several hundred seeds. This takes
on the order of seconds to complete. If we provide fewer slime chunks, this leaves us
with a larger search space and thus a longer running time, allowing us to therefore
adjust the computational difficulty of the problem as necessary.

Finally, we can extend the 48-bit seed to a list of 64-bit seeds which can be generated
by Java Random. When generating 64-bit seeds, Java Random actually generates
two 32-bit seeds directly in order and concatenates them together. Since the second
32-bit number is determinable by the first number, and because the LCG only works
in 48 bits, this essentially restricts the number of 64-bit seeds to 48 bits. As a result,
by working backwards, we can extend every 48-bit seed to on average one 64-bit full
seed.

In a practical scenario, we would imagine that a player goes around finding loca-
tions of slimes and marking those chunk coordinates down. This is then used as
input into our program. The slime chunks cannot be recovered from the world file
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except in the trivial case where we simply look at the world seed stored on the save
file. It is also not practical to use the absence of a slime chunk to help with the
reverse engineering, both because it would not help with the pre-filtering step, and
also because it would be very easy for the player to mark down a false negative
simply because they have not seen any slimes there yet. If there are multiple valid
seeds, the player can filter down further by finding more slime chunks, or they can
manually check the seeds for a match.

2.2 Sequential Implementation

We based our algorithms on C code by Tim Goddard, available on GitHub. The
chunk coordinates are first read from file and converted to “chunk values” using
some addition and multiplication. Care needs to be taken to the placement location
and kind of type conversions used in order to replicate Java/C integer overflow be-
havior. This is done in calcChunkVal.

The attack takes three steps. First, in calcLowerBitSeries, we pre-filter the lower
18 bits of the seed based on whether it will lead to an even number or not (the
reasoning for this is explained above) for the provided chunks. This is done using a
filter on all possible 18-bit lower seeds, checking whether all the given chunk values
lead to an even number based on the slime generation code for that seed.

Second, we filter on whether a seed will generate slime chunks for all the given
slime chunks. We check all possible 30-bit partial seeds by combining them with
the pre-filtered lower 18 bits and checking whether that 48-bit seed will generate the
provided slime chunks. We first did this using a map and filter on a large lazy list,
which is seen in calcSlimeSeedsNaive. We later implemented a recursive solution,
seen in calcSlimeSeeds. This looped through all possible 30-bit numbers and cons’d
the matching ones together. The lazy list solution was more optimized when running
sequentially, but as we will see in the Performance section, the recursive solution is
parallelizable without too much overhead.

Third, in expand48To64Random, we extend the 48-bit seeds to the possible 64-bit
seeds generatable by Java Random. As explained above, this is on average a one-to-
one mapping. We also make use of a filter on a large list to accomplish this.

To enable all of this functionality, we also implemented some helper functions.
randomNext reimplements Java’s LCG for the first two filtering steps, while
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randomReverse is used to work backwards on the third extension step. The first
two steps involve running Minecraft’s slime chunk logic, which seeds the LCG using
a combination of the world seed and the chunk value, and then performs some bit
operations on it. We do this for each provided chunk and seed.

2.3 Parallelization

The primary limiting factor of this seed cracking algorithm is the brute force attack
on the remaining possible seeds after the filtering on the lower 18 bits. The sequential
implementation takes around 45 seconds, and the other steps take under a second
combined to complete. Thus, this attack can be parallelized by partitioning the
search space. We first implemented a naive partitioning technique using parBuffer.
We then used “chunking,” similar to Simon Marlow’s K-means solution, to split up
the search space into a user-input-defined number of blocks. We tested this on both
parList (using rseq and redeepseq) and the Par Monad’s parMap.

More details on the rationale and results of this parallelization are provided in the
Performance section below.

3 Performance Measurements

Performance measurements were taken on a 2018 MacBook Pro with a 6-core 2.6
GHz Intel Core i7 CPU. We generated list of slime chunks from a real Minecraft seed
and used that for our input; this is available at vals.txt.

3.1 Sequential Solutions

calcSlimeSeedsNaive, which performs a map and filter on a lazy list, took approx-
imately 39 seconds to run. calcSlimeSeeds, which recursively loops on all possible
values and builds them into a list, took about 45 seconds to run. This is likely be-
cause map and filter are well-optimized. However, combining the results together
for calcSlimeSeedsNaive on all possible pre-filtered seed combinations required a
custom concatMap’ that performed strict evaluation in order to prevent overhead
from dominating completely.
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3.2 Naive parBuffer Parallelization

For illustrative purposes, we performed a naive parallelization using parBuffer,
directly on the map and filter operations. This created 230 = 1, 073, 741, 824 sparks,
causing the overhead to dominate. We experienced a 5x slowdown as the program
took 225 seconds to complete (Fig. 1).

Figure 1: Naive parBuffer parallelization. Note the long running time.

3.3 Naive Parallelization with Chunking

Clearly, there needed to be fewer sparks. We took Marlow’s parallel K-means as in-
spiration and performed chunking. We broke list up into blocks (to avoid confusion
with slime chunks, we do not call them chunks), but since they were large lazy lists,
we used our own list creation instead of directly splitting the large list. (This is also
why a parListChunk directly on the map and filter would not work; the program
spends the bulk of the time managing the large lazy list.) We then ran the sequential
algorithm for each block before combining them back together (that last step took a
trivial amount of time so there was no need to parallelize it).
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However, with the naive solution (involving map and filter), this greatly strained
the garbage collector. In fact, the majority of the time was spent garbage collecting;
only approximately 40% of the time was actually productively running the algorithm
(Fig. 2). As a result, overhead leads to worse running times than the sequential so-
lution until approximately 64 blocks; the program is ultimately able to produce a
25% speedup compared to the sequential version, but that is not that much faster
overall.

Figure 2: Naive parList parallelization as viewed on ThreadScope. Note the massive
garbage collection.
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Figure 3: Running times for naive parList and Par Monad parallelization. Note the
massive overhead costs at small block sizes.

3.4 Parallelizing the Recursive Solution

The issues with the massive garbage collection overhead motivated our switch over to
a recursive implementation of calcSlimeSeeds, which is described in the Sequential
Implementation section above. Using this, we get a dramatic speedup to approxi-
mately 7 seconds. An analysis on ThreadScope shows work being distributed evenly
across all threads (Fig. 4). This demonstrates the inefficiencies of the large lazy
list approach when it comes to attempting to parallelize, and the need for a sequen-
tial algorithm that will not have such overhead, even when parallelizing. With this
solution, we are getting a near-optimal speedup: a 6x speedup on a 6-core processor.
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Figure 4: Par Monad parallelization as viewed on ThreadScope. Note the efficient
and even distribution of work.

3.5 Strategies vs. Par Monad

We get nearly the same efficiency and speedup when using Strategies compared to
the Par Monad. Interestingly, unlike with our ParList solution, overhead does not
dominate for the ParMonad even at very large block numbers (Fig. 5). We speculate
that this is due to the Par Monad’s implementation of parallelization, which uses a
load balancing scheduler instead of creating discrete sparks, and as such does not
lead to the same overhead that creating tens of thousands of sparks would.
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Figure 5: Running times for parList and Par Monad parallelization for different
thread counts and block counts. Note how overhead begins to dominate at low and
high block numbers, except the Par Monad handles large block numbers well.
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4 Future Work

Given more time, we would like to further investigate the possibilities for optimizing
the sequential algorithm. This may give us additional speedup, as the original C code
is faster than ours even when running sequentially, so there is room for improvement.
We would also like to add support for biome-based seed reverse engineering for the
remaining 16 bits, instead of inferring based on Java Random’s vulnerabilities; this
would allow for more accurate seed cracking and work for non-randomly generated
seeds. Finally, we would like to investigate if it is possible to create an efficiently
parallelizable solution using library functions instead of direct recursion. Map and
filter on a large lazy list don’t work well due to the overhead, but there may be some
list building functions which may work.

5 Source Code

Cracker.hs

module Cracker(calcChunkVal, calcLowerBitSeries, expand48To64Random, calcSeq,

calcParListBlocks, calcSeqNaive, calcParListBlocksNaive, calcParBufferNaive,

calcParMonadBlocks, calcParMonadBlocksNaive) where

import Data.Bits(Bits(shiftR, shiftL, xor, (.&.), (.|.)))

import Data.Int(Int32, Int64)

import Data.Word(Word32, Word64)

import Data.List(foldl')

import Control.Parallel.Strategies(using, parList, rdeepseq, parBuffer)

import Control.Monad.Par(runPar)

import Control.Monad.Par.Combinator(parMap)

-- adapted from / inspired by https://stackoverflow.com/q/43033099

concatMap' :: Foldable t => (a -> [b]) -> t a -> [b]

concatMap' f = reverse . foldl' (flip ((++) . f)) []

mask48Bit :: Word64

mask48Bit = 1 `shiftL` 48 - 1

calcChunkVal :: (Int32, Int32) -> Int64

calcChunkVal (x, z) = xsqv + xv + zsqv + zv

where xsqv = fromIntegral (xw * xw * 0x4c1906)

xw = fromIntegral x :: Word32

xv = fromIntegral $ x * 0x5ac0db

zsqv = fromIntegral (z * z) * 0x4307a7

zv = fromIntegral $ z * 0x5f24f
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randomNext :: Word64 -> Word64

randomNext seed = (seed * 0x5deece66d + 0xb) .&. mask48Bit

randomReverse :: Word64 -> Word64

randomReverse seed = ((seed - 0xb) * 246154705703781) .&. mask48Bit

matches :: Int64 -> Int64 -> Bool

matches seed chunkVal = doShift random == 0 where

random = fromIntegral ((seed + chunkVal) `xor` 0x5e434e432) .&. mask48Bit

checkEven :: Int64 -> Int64 -> Bool

checkEven seed chunkVal = even $ doShift random where

random = fromIntegral ((seed + chunkVal) `xor` 0x5e434e432) .&. mask48Bit

doShift :: Word64 -> Word64

doShift random

| bits - val + 9 < 0 = doShift nextRandom

| otherwise = val

where nextRandom = randomNext random

bits = nextRandom `shiftR` 17

val = bits `mod` 10

calcLowerBitSeries :: [Int64] -> [Int64]

calcLowerBitSeries chunkVals = filter (flip all chunkVals . checkEven)

[0 .. 1 `shiftL` 18 - 1] :: [Int64]

calcSlimeSeedsNaive :: [Int64] -> [Int64] -> Int64 -> [Int64]

calcSlimeSeedsNaive chunkVals seeds lowerBits

= filter (flip all chunkVals . matches)

$ map ((.|. lowerBits) . (`shiftL` 18)) seeds

calcSlimeSeedsParBuffer :: [Int64] -> [Int64] -> Int64 -> [Int64]

calcSlimeSeedsParBuffer chunkVals seeds lowerBits

= filter (flip all chunkVals . matches)

(map ((.|. lowerBits) . (`shiftL` 18)) seeds `using` parBuffer 100 rdeepseq)

`using` parBuffer 100 rdeepseq

calcSlimeSeeds :: [Int64] -> (Int64, Int64) -> Int64 -> [Int64]

calcSlimeSeeds chunkVals (seed, endSeed) lowerBits

| seed == endSeed = []

| all (matches fullSeed) chunkVals = fullSeed : restSeeds

| otherwise = restSeeds

where fullSeed = (seed `shiftL` 18) .|. lowerBits

restSeeds = calcSlimeSeeds chunkVals (seed + 1, endSeed) lowerBits
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expand48To64Random :: Int64 -> [Int64]

expand48To64Random seed = map ((.|. lowerInt) . (`shiftL` 32) . subtract offset)

$ filter ((upperPartial ==) . (.&. mask16Bit)) $ map

(fromIntegral . (`shiftR` 16) . randomReverse . fromIntegral . (middle .|.))

[0 .. mask16Bit]

where mask16Bit = 1 `shiftL` 16 - 1

lowerInt = seed .&. (1 `shiftL` 32 - 1)

middle = lowerInt `shiftL` 16

offset = (seed .&. (1 `shiftL` 31)) `shiftR` 31

upperPartial = (seed `shiftR` 32 + offset) .&. mask16Bit

calcSeqNaive :: [Int64] -> [Int64] -> [Int64]

calcSeqNaive chunkVals

= concatMap' (calcSlimeSeedsNaive chunkVals [0 .. 1 `shiftL` 30 - 1])

calcParBufferNaive :: [Int64] -> [Int64] -> [Int64]

calcParBufferNaive chunkVals

= concatMap' (calcSlimeSeedsParBuffer chunkVals [0 .. 1 `shiftL` 30 - 1])

calcParListBlocksNaive :: Int64 -> [Int64] -> [Int64] -> [Int64]

calcParListBlocksNaive numBlocks chunkVals lowerBits

= concat (map (flip concatMap' lowerBits . calcSlimeSeedsNaive chunkVals)

blocks `using` parList rdeepseq)

where

step = 1 `shiftL` 30 `quot` numBlocks

blocks = map (\i -> [i .. i + step - 1]) [0, step .. 1 `shiftL` 30 - 1]

calcParMonadBlocksNaive :: Int64 -> [Int64] -> [Int64] -> [Int64]

calcParMonadBlocksNaive numBlocks chunkVals lowerBits = concat $ runPar

$ parMap (flip concatMap' lowerBits . calcSlimeSeedsNaive chunkVals) blocks

where

step = 1 `shiftL` 30 `quot` numBlocks

blocks = map (\i -> [i .. i + step - 1]) [0, step .. 1 `shiftL` 30 - 1]

calcSeq :: [Int64] -> [Int64] -> [Int64]

calcSeq chunkVals

= concatMap (calcSlimeSeeds chunkVals (0, 1 `shiftL` 30 - 1))

calcParListBlocks :: Int64 -> [Int64] -> [Int64] -> [Int64]

calcParListBlocks numBlocks chunkVals lowerBits

= concat (map (flip concatMap lowerBits . calcSlimeSeeds chunkVals) blocks

`using` parList rdeepseq)

where

step = 1 `shiftL` 30 `quot` numBlocks

blocks = map (\i -> (i, i + step - 1)) [0, step .. 1 `shiftL` 30 - 1]
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calcParMonadBlocks :: Int64 -> [Int64] -> [Int64] -> [Int64]

calcParMonadBlocks numBlocks chunkVals lowerBits = concat $ runPar

$ parMap (flip concatMap lowerBits . calcSlimeSeeds chunkVals) blocks

where

step = 1 `shiftL` 30 `quot` numBlocks

blocks = map (\i -> (i, i + step - 1)) [0, step .. 1 `shiftL` 30 - 1]

Main.hs

module Main where

import Cracker

import System.Environment(getArgs)

import Control.Monad(unless)

import System.Exit(die)

import Data.List(intercalate)

import Data.Ix(inRange)

main :: IO ()

main = do

let types = ["seq", "parList", "parBuffer", "parMonad"]

args <- getArgs

unless (inRange (2, 4) (length args) && args !! 1 `elem` types) $

die $ "Usage: <filename> (" ++ intercalate "|" types ++

") <num-blocks> [naive]"

let numBlocks = case args of

_ : _ : num : _ -> read num

_ -> 128

chunkCoords <- case args of

filename : _ -> do

text <- readFile filename

return $ map (((\[x, z] -> (x, z)) . map read) . words) (lines text)

_ -> return []

let chunkVals = map calcChunkVal chunkCoords

putStrLn "Calculated the following chunk values from the provided \

\chunk coordinates:"

print chunkVals

let lowerBits = calcLowerBitSeries chunkVals

putStrLn "Calculated the following valid lower 18 bits:"

print lowerBits

let seeds = case args of

[_, "parList", _, "naive"] ->

calcParListBlocksNaive numBlocks chunkVals lowerBits

[_, "seq", _, "naive"] -> calcSeqNaive chunkVals lowerBits

[_, "parMonad", _, "naive"] ->
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calcParMonadBlocksNaive numBlocks chunkVals lowerBits

_ : "parList" : _ ->

calcParListBlocks numBlocks chunkVals lowerBits

_ : "seq" : _ -> calcSeq chunkVals lowerBits

_ : "parBuffer" : _ -> calcParBufferNaive chunkVals lowerBits

_ : "parMonad" : _ ->

calcParMonadBlocks numBlocks chunkVals lowerBits

_ -> [0]

putStrLn "Calculated the following valid 40-bit seeds:"

print seeds

let fullSeeds = concatMap expand48To64Random seeds

putStrLn "Calculated the following valid 64-bit randomly generatable seeds:"

print fullSeeds
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