PARALLEL RUBIK’S CUBE SOLVER IN HASKELL

Yash Ashok Agarwal - ya2467
Chandrashekhar Dhulipala - cd3132

1 INTRODUCTION

The Rubik’s cube is one of the most popular puzzles in the world. It is a 3D combination puzzle
in which each of the six faces of the cube is colored with one of the six solid colors. The six
faces are denoted as Front, Up, Right, Left, Down and Back. Each face can be rotated
clockwise (U) or anti-clockwise (U’). Any sequence of moves to transform the cube from one
configuration to another can be represented using this notation.

Figure1: Rubik Cube

In this project, we attempt to design and implement a parallel batch rubik’s cube solver in
Haskell. We use an algorithm known as the two-phase solver developed originally by Herbert
Kociemba. We used a pre-existing implementation, refactored it to make it easy to parallelize
and experimented with various parallel strategies. We compared the execution times and
analyzed various factors that affect it. The subsequent sections describe our approach and
results.

2 SEQUENTIAL ALGORITHM

2.1 Two Phase solver

Given the scrambled configuration of a cube in the form of a length-54 string (indicating the
colors on each of the fifty-four faces), the two phase solver finds a solution to the configuration,
which is a sequence of moves to transform the scrambled cube to a solved one. Example below

Input : DDDFUDLRB FUFDLLLRR UBLBFDFUD ULBFRULLB RRRLBBRUB UBFFDFDRU
Output: ULB'LR2ZDRU2FU2L2B2UB2D'B2 U'R2U L2R2 U

This solver is implemented as a modular function in haskell, which for the rest of the report, is
abstracted out as a method which takes as input one cube and outputs a string denoting the
solution.

The first time this function is called on a system, it precomputes and stores some lookup tables
which act as lower bounds on a heuristic function used in A* like search. This precomputation is
done only once and does not factor into the subsequent runs of the program.

The actual solving procedure transpires in two phases. In the first phase, the algorithm looks for
a sequence of moves to transform the scrambled cube into a particular subgroup called ‘G1’.
This subgroup is a family of orientations that make use of only the moves <U,D,R2,L2,F2,B2> to
go from one to the other. To search for a particular configuration in G1 reachable from the initial
state, the algorithm makes use of Iterative-Deepening A* search which makes use of the
heuristic function described above. After the algorithm finishes the first phase, the cube is in G1.

In the second phase, the algorithm makes use of only moves in G1 to transform the cube into a
solved state. This makes use of standard mathematical properties of the G1 group and does not
involve any search algorithm.

In the serial version of our code, we read the input file, which contains either 20,000 or 40,000
randomly permuted initial configurations of the cube and run the solve procedure described
above sequentially on the list of cubes.

file <- readFile "test-40k.txt"
let cubes = lines file

solutions = map (faceletList2 p) cubes
print (solutions)

This takes 863 seconds for 20k cubes and 1797 seconds for 40k cubes.

These numbers give us a fair idea of the sequential complexity of the algorithm and indicate that
parallelism could help make the overall program much more efficient. The threadscope profile
for the sequential program is shown below, and as expected the entire work is done by one
core.

0s 50s 1008 1508 2005 2508 300s 3508 4008 4505 5008 5508 600s 6505

Figure 2: Threadscope profile for 20k cubes, serial execution

3 Parallel Implementation
3.1 AN ATTEMPT TO PARALLELIZE - parMap

Ouir first (probably naive) idea to parallelize this was to use the parallel_map operation to
execute the solve procedure parallelly for all cubes in our huge input list. This scans the whole
list and creates sparks (using rpar) for solving each cube in the list, which are then placed in a
pool. If there are any processors available to take up new work, then they are supplied with
pending sparks from the pool, which may be evaluated at any point in the future. So a spark
here is similar to an incomplete result or a ‘promise’ of either evaluation (conversion) or failure
(overflow/fizzle).

parallel map:: (a->b)->[a]->Eval [b]
parallel map func [] = return []
parallel map func (x:xs) = do

b <- rpar (func x)

bs <- parallel map func xs

return (b:bs)

solutions = runEval (parallel map (faceletList2 p) cubes)

This approach is inspired by Simon Marlow’s initial pointers on parallelizing a Sudoku solver.
The parallel map operation returns immediately after creating sparks for all the cubes, so
we use the runEval operation from the Eval monad to actually evaluate the sparks before
proceeding further. parMap in Control.Strategies has the same implementation as our
paralle_map

While the performance of this on a list of 20,000 cubes is slightly promising, we observed that
the performance of a parallel map on inputs as huge as 40,000 cubes caused the performance

to degrade compared to the serial version of the program. For 40,000 cubes, the trend of
elapsed runtime is shown below.

Elapsed time vs. Num cores - parMap - 40000 sparks
2500

2000
1500

1000

Elapsed time (sec)

500

2

Num cores

Figure 3: Elapsed time vs Number of cores on 40000 cubes
('O’ cores here illustrates sequential version)

We can attribute this to the fact that an excessive number of sparks are created which
eventually overflow or fizzle out.

SPARKS: 40000 (8193 converted, 31807 overflowed, 0 dud, 0 GC'd, O
fizzled)

INIT time 0.002s (0.035s elapsed)
MUT time 1752.441s (1868.417s elapsed)
GC time 440.915s (240.919s elapsed)
EXIT time 0.005s (0.012s elapsed)

Total time 2193.531s (2109.383s elapsed)
The above log is for 40,000 cubes run parallelly on 2 cores.

Another reason why this is not the best approach to parallelize is that it leads to a very
imbalanced distribution of load between the N cores. This is evident from the threadscope
profile below.

We see that HEC 0 is idle for a long time towards the tail of execution, while HEC 1 is busy
evaluating sparks allotted to it.

0s 50s 100s 1508 200s 2508 300s

| L L 1 L I L L L L | L L L 1 I L L 1 L | L L L L I L L L L | L L 1
Ackivity -

R RN v |

HEC 1

Figure 4:Threadscope profile for 20k cubes, Parallel execution with 2 cores

3.2 BETTER PARALLELIZATION - parChunkList

For larger inputs of size 40k and above, the parMap approach’s execution time becomes more
then the serial approach. This happens due to uneven load distribution. The task of solving one
cube is a fine grain problem in terms of granularity. To solve this problem we used the
parListChunk monad on the contents list of input.

By definition,

parListChunk :: Int -> Strategy a -> Strategy [a]

It divides the list into chunks and on each chunk it applies evalList strategy. Dividing the list into
chunks and assigning each core a chunk ensure better workload distribution. Also, for each core
the task is to solve an entire chunk which makes the task more coarser than before.

file <- readFile "test-40k.txt"
let cubes = lines file
solutions = map (faceletList2 p) cubes ‘using’ parListChunk
1000 rdeepseq

The above code snippet from our code reads the input file containing the 40,000 cubes and
maps over it calling the solver function faceletList2 specifying the strategy to be used as
rdeepseq. rdeepseq forces Haskell to evaluate the result preventing weak head normal form
creation. Dividing the input into chunks might also prevent spark overflow since for our machine
we observed the maximum size of spark pool is 8192. This is because based on the chunk size
each core is assigned a sublist of size N/C where N= number of total inputs and C=Chunk size
and if N/C <8192 then sparks overflow will not occur.

https://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Int.html#t:Int
https://hackage.haskell.org/package/parallel-3.2.2.0/docs/Control-Parallel-Strategies.html#t:Strategy
https://hackage.haskell.org/package/parallel-3.2.2.0/docs/Control-Parallel-Strategies.html#t:Strategy

Ackvity

e "
e ul

Figure 5: Threadscope profile for 20k cubes using 2 cores and 1000 chunks

In the above diagram we can see that there are instances where the Garbage Collector (GC)
causes all the cores to halt until it collects the sparks which are not needed anymore. This is
denoted by the dip in activity section and represented by the orange color in HEC 0 and HEC 1.

Os 50s 100s 150s 200s 250s 300s 350s 400s 450s

Figure 6: Threadscope profile for 20k cubes using 2 cores and 1000 chunks

As seen from the 2nd figure above there is some time for which the core sits idle. This idleness
time is very less compared to the core idleness time in parMap implementation.

4 Results

Elapsed time vs. Num cores - 20k cubes, 1000 chunks

1000

750
A
)
[ak]

E 500
=
k]
w
[=1
m

w 250

Mum cores

Figure 7: Graph of Elapsed time versus Number of Cores 20k

Elapsed time vs. Num cores 40k 1000 chunks

2000

1500
[+]
£

- 1000
(]
[72]
Q
©
w

500

0

2 3 4 8
Num cores

Figure 8: Graph of Elapsed time versus Number of Cores 40k

4.1 EFFECT OF NUMBER OF CORES

To observe the effect of the number of cores we kept the number of chunks as 1000(constant)
and used an input of 40,000 cubes.

Cores Execution Time(1000 Speedup
chunks)

2 893.379 1.98

3 596.077 2.86

4 549.844 3.26

8 417.049 4.31

4.2 EFFECT OF CHUNK SIZE

Table 1: Effect of Number of Cores

We have seen that the performance of parListChunk on the huge input files is very

encouraging. The results enumerated above are for a constant (1000) number of chunks into
which the input list is divided. This inspired us to fix the number of cores and vary the number of

chunks to find the optimal parameters for maximum speedup.

As we observed that 8 cores is performing well for input of size 40,000 cubes, we fixed the
number of cores at 8 and measured the elapsed time with various chunks. The trend is shown

below -

Elapsed time vs. Chunk Size

500
mo\\\,//""ﬂ——_—d——_~d_———d——_—d_——_—_—‘_—_
300

200

Elapsed time

100

500 1000 1500 2000

Chunk Size

Figure 9: Graph of Elapsed time versus Chunk Size

The best performance is observed for 128 chunks - 386.4 seconds.

Speedup = 1797 / 386.4 = 4.65 as compared with the serial program for 40,000 cubes.
TASKS: 18 (1 bound, 17 peak workers (17 total), using -N8)

SPARKS: 313 (313 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.002s (0.055s elapsed)
MUT time 897.018s (317.333s elapsed)
GC time 1682.139s (69.014s elapsed)
EXIT time 0.002s (0.004s elapsed)

Total time 2579.338s (386.406s elapsed)

4.3 EFFECT OF SYSTEM SPECIFICATIONS:

We tested all the above results on systems with different configurations like Macbook
Pro(M1-chip 8 core) Macbook air(Intel chip 4 core).

The variation in results due to system configuration in both the mentioned devices was
negligible.

5 FUTURE WORK

We explored different ways to parallelize the serial implementation. Adding the functionality of

solving higher dimensional cubes apart from 3x3 in future. Another improvement area that can
be explored in the future is parallelizing the Iterative-Deepening A* search algorithm’s iteration.
This might help for solving cubes with higher dimensionality since precomputing the states for

all higher order cubes will not be optimal.

6 CONCLUSION

In conclusion, we achieved a 4.65 speedup by dividing the input list into 128 chunks and
parallelizing them using 8 cores. We explored multiple approaches to parallelize the
serial rubik’s cube solver and identified the factors that govern their execution time.

7 REFERENCES

https://qithub.com/Lysxia/twentyseven

http://kociemba.org/cube.htm
https://hackage.haskell.org/package/threadscope

Parallel and Concurrent Programming in Haskell, Simon Marlow

PN

8 CODE

twentyseven.hs

{-# LANGUAGE NamedFieldPuns, RecordWildCards #-}
import Rubik.Cube

import Rubik.Misc

import qualified Rubik.Solver.Optimal as Optimal
import qualified Rubik.Solver.TwoPhase as TwoPhase

import qualified Rubik.Tables.Internal as Option

import Control.Exception
import Control.Monad

import Data.Time.Clock

10

https://github.com/Lysxia/twentyseven
http://kociemba.org/cube.htm
https://hackage.haskell.org/package/threadscope
https://simonmar.github.io/pages/pcph.html

import
import

import

import
import

import
import

import

Data.

Char

Data.Monoid

Numer

Optio
quali

ic (showFFloat)

ns.Applicative hiding (value)
fied Options.Applicative as Opt

System.Exit

System.IO.Error

Control.Parallel.Strategies (Eval, rpar,runkEval,using,parListChunk

, rdeep

type S

seq)

olver

= Cube -> Move

data Parameters = Parameters {

ve
SO
ts

rbose
lve
Path

Bool,
Solver,
Maybe FilePath,

precompute :: Bool,

overwrite :: Bool,

no
st

Files
rict

debug

optpar
optpar
<S>

<k >

<* >

<* >

<* >

se
se = P
switch

<> h

Bool,
Bool,
Bool

Parser Parameters
arameters
(long "verbose" <> short 'v'
elp "Print time taken to solve every cube")

flag TwoPhase.solve Optimal.solve (long "optimal"

<> h
(optio

elp "Use optimal solver (experimental)")
nal . strOption) (long "ts-dir" <> short 'd'

<> metavar "DIR"

<> h
switch
<> h

switch

elp "Location of precomputed tables")
(long "precompute" <> short 'p'
elp "Precompute and store tables \
\ (do enable this at the first invocation)"
(long "overwrite"

)

11

<> help "Recompute and overwrite tables even when they
exist already")
<*> switch (long "no-files"
<> help "Do not read or write any files \
\ (recompute tables for this session)")
<*> switch (long "strict"
<> help "Force loading tables before doing anything
else")
<*> gswitch (long "debug")

parallel map:: (a->b)->[a]->Eval [Db]
parallel map func [] =return []
parallel map func (x:xs) = do
b<- rpar (func x)

bs <- parallel map func xs

return (b:bs)

main :: IO ()
main = do
p <- execParser $ info (helper <*> optparse) briefDesc
setOptions p
file <- readFile "test-40k.txt"
let cubes = lines file
--solutions = runEval (parallel map (faceletList2 p)
cubes)
solutions = map (faceletlList2 p) cubes “using’
parListChunk 1000 rdeepseq

--solutions = map (faceletList2 p) cubes
print (solutions)
return ()
setOptions :: Parameters -> IO ()
setOptions Parameters{..} = do

mapM Option.setTsPath tsPath
Option.setPrecompute precompute
Option.setOverwrite overwrite
Option.setNoFiles noFiles
Option.setDebug debug

when strict . void $ evaluate

(solve . either undefined moveToCube . stringToMove $
"ulfrbd")

-- A sequence of moves, e.g., "URFE".
moveSequence s = putStrLn $
case stringToMove s of

Left ¢ -> "Unexpected '"" ++ [c] ++ "'."

Right ms -> stringOfCubeColors . moveToCube . reduceMove $
ms
faceletlList2 p s = case readCube (filter (not . isSpace) s) of

Left err -> show err
Right cube -> justSolve2 p cube

readCube s
= case colorFacelets'' s of
Nothing -> Left "Expected string of length 54 of a set of
(any) 6 \
\characters. Centers must be distinct."
Just colors ->
case colorFaceletsToCube colors of
Left fs ->
Left $ "Facelets " ++ show fs
+4+ " ("™ ++ show (map (s !!) fs) ++ ") \
\do not match any regular cubie."
Right Nothing ->
Left "Not a permutation of cubies \
\ (a cubie 1s absent, and a cubie occurs

twice) ."
Right (Just c¢) | solvable ¢ -> Right c
~ —> Left "Unsolvable cube."
justSolve2 :: Parameters -> Cube -> String

justSolve2 p ¢ = moveToString (solve p cC)

unlessQuiet' :: IO () -> Parameters -> IO ()
unlessQuiet' a = unlessQuiet (const a) ()

-— Strict in its second argument
unlessQuiet :: (a -> IO ()) -> a -> Parameters -> IO ()
unlessQuiet £ a p = evaluate a >> when (verbose p) (f a)

clock :: IO a -> IO Double
clock a = do
t <- getCurrentTime
a
t' <- getCurrentTime
return (diffTimeToSeconds (diffUTCTime t' t))
where
diffTimeToSeconds = fromRational . toRational

listSeq' :: [a]l -> [a]
listSeq' s = s "listSeqg s

vPutStrln :: String -> Parameters -> IO ()
vPutStrLn s = unlessQuiet putStrLn (listSeq' s)

vPutStr :: String -> Parameters -> IO ()
vPutStr s = unlessQuiet putStrLn (listSeq' s)

tstables.hs
import TwoPhase

import Control.Applicative

import System.Directory
import System.Environment
import System.Exit

import System.FilePath
import System.IO

main :: IO ()
main = do
args <- getArgs
path <- case args of
[1 -> (</> ".tseven") <S$> getHomeDirectory
p : —> return p
createDirectoryIfMissing
True -- createParents
path

let

pl =
P2

path </> "phasel"
path </> "phase2"

fileExists <- and <$> mapM doesFileExist [pl,p2]
case filekExists of

True —->

++"' "

hPutsS

do
trln stderr $ "File (s)

exitFailure

False -

putSt

> do
rILn "Phase 1"

already exist (s)

encodeFile pl phaselCompressed’

putsSt

rILn "Phase 2"

encodeFile p2 phase2Compressed’

exits

Solver.hs

uccess

{-# LANGUAGE ScopedTypeVariables,
TypeOperators,
ViewPatterns #-}

module

import
import
import
import

import

import
import
import
import
import
import
import

Rubi

Rubi
Rubi
Rubi
Rubi

Cont

Data.
Data.

Data

Data.
Data.
qualified Data.Vector as V

qualified Data.Vector.Storable.Allocated as

k.Solver where

k.Cube
k.IDA
k.Misc
k.Symmetry

rol.Applicative

Coerce
Foldable
.Int (Int8)
Maybe
Tuple.Extra

type MaybeFace = Int
type SubIndex = Int

type D

Int =

Int8

RecordWildCards,

in '" ++ path
TypeFamilies,
S

15

data Projection x a0 as a = Projection

{ convertP :: x -> a

, 1sIdenP :: a -> Bool

, indexP :: as -> a -> a

, subIndexSize :: Int

, unfoldP :: a0 -> SubIndex -> [as]

, subIndexP :: a -> Sublndex

}
type Projection' m a = Projection Cube (MoveTag m [RawMove al])
(RawMove a) (RawCoord a)
type SymProjection m sym a = Projection Cube (MoveTag m [SymMove
sym a]) (SymMove sym a) (SymCoord sym a)
newtype Distance m a = Distance { distanceP :: a -> DInt }

infixr 4 |*|, |.|

{-# INLINE (|*]|) #-}

(1*1) :: (TupleCons b0, TupleCons bs, TupleCons b)
=> Projection x a0 as a
-> Projection x b0 bs b

-> Projection x (a0 :| b0) (as :| bs) (a :| b)
a |*| b = Projection
{ convertP = 1iftA2 (|:]) (convertP a) (convertP Db)
, isIdenP = \(split -> (a_, b)) -> isIdenP a a_ && isIdenP b
b_
, indexP = \(split -> (as , bs)) (split -> (a , b)) —>
indexP a as_ a_ |:| indexP b bs b
, subIndexSize = sublIndexSize a * subIndexSize Db
, unfoldP = \ (split -> (a0 , b0)) ci ->
let (ai, bi) = ci "divMod subIndexSize Db
in zipWith (|:]) (unfoldP a a0 _ ai) (unfoldP b b0 bi)
, subIndexP = \(split -> (a_, b)) -> flatIndex (subIndexSize
b) (subIndexP a a) (subIndexP b b) }
{-# INLINE (|.]) #-}

(].1) :: forall x a0 as a b0 bs b
Projection x a0 as a
-> Projection x b0 bs b
-> Projection x (a0, b0) (as, bs) (a, b)

16

a |.| b=a |*| (coerce b :: Projection x (Tuplel b0) (Tuplel
bs) (Tuplel b))

{-# INLINE (>$<) #-}

(>$<) :: forall m a b. (b -> a) -> Distance m a -> Distance m b
(>$<) = coerce (flip (.) :: (b -> a) -> (a -> DInt) -> (b ->
DInt))

{—-# INLINE maxDistance #-}

maxDistance :: forall f m a. Foldable f => f (Distance m a) ->
Distance m a

maxDistance = foldl' (\(Distance f) (Distance g) -> Distance $
\x => max (f x) (g x)) (Distance $ const 0)

-—- | ==Branching reduction

-— The @Int@ projection keeps track of the latest move (@== 6@
-— for the starting point).

-- 18 moves

—-— We can indeed reduce the branching factor from 18 to 15
-— by considering that successive moves on the same face
-- can and will be shortened as a single move.

-—- Furthermore, since moves on opposite faces commute, we may
force

-— them to be in an arbitrary order, reducing the branching
factor

-- to 12 after half of the moves (U, L, F).

-— 10 moves

-— Instead of a factor 10, we have factors

-- - 9 after R, B;
-- - 8 after L, F;
-—- - 7 after D;
-—- - 4 after U.

{-# INLINE solveWith #-}

17

solveWith
Eg a
=> MoveTag m [ElemMove] -> a0
-> Projection Cube a0 as a
-> Distance m a
-> Cube -> Move
solveWith (MoveTag moveNames) ms ps pd

= fromdust . search Search{..} . tag . convertP ps

where
goal = isIdenP ps . snd
estm = distanceP pd . snd
edges (i, t)

= fmap
(\ (1, succs, J') —>
let x = indexP ps succs t in Succ 1 1 (3', x))
(succVector V.! (subIndexP ps t * 7 + 1))

-- For every move, filter out "larger" moves for an

arbitrary total order of faces
succVector = V.fromList $ do

subi <- [0 .. subIndexSize ps - 1]
let as = unfoldP ps ms subi

i' <= [0 .. 6]

return

[(1, m, fromEnum 7J)
| (1@(, Jj), m) <- zip moveNames as

, 1" == 6 || (let i = toEnum i' in not

oppositeAndGT j 1)) |

type Tag a = (Int, a)
tag :: a -> Tag a
tag = (,) 6

{-# INLINE rawProjection #-}

rawProjection :: (FromCube a, RawEncodable a)
rawProjection = Projection

{ convertP = convert

, 1sIdenP = (== convert iden)

, indexP = (!9)

, subIndexSize = 1

, unfoldP = \ (MoveTag as) _ -> as

(1 ==73 Il

=> Projection'

m

a

18

, subIndexP = _ -> 0
}

where
convert = encode . fromCube

{-# INLINE symProjection #-}

symProjection :: (FromCube a, RawEncodable a)

=> (a -> SymCoord sym a) -> SymProjection m sym a
symProjection convert = Projection

{ convertP = convert'

, isIdenP = let (x0,) = convert' iden in \(x,) -> x == x0

, indexP = symMove' 16

, subIndexSize = 16

, unfoldP = \ (MoveTag as) 1 -> [as !! j | J <- symAsMovePerm
(symle !'! i)]

, subIndexP = \(, SymCode i) -> i
}

where
convert' = convert . fromCube

-— TODO newtype this
{-# INLINE symmetricProj #-}

symmetricProj :: Eq ¢ => Symmetry sym
-> Projection Cube (MoveTag m [b]) as c
-> Projection Cube (MoveTag m [b]) as c
symmetricProj sym proj = proj
{ convertP = convert

unfoldP = \as i -> rawMoveSym sym (unfoldP proj as i)

’

}

where
convert = convertP proj . conjugate (inverse (symAsCube

sym))

{-# INLINE distanceWith2 #-}
distanceWith?
(RawEncodable a, RawEncodable b)
=> S.Vector DInt -> Distance m (RawCoord a, RawCoord b)
distanceWith2 v = Distance $ \ (RawCoord a , b@(RawCoord b)) ->
v S.! flatIndex (range b) a b

19

Symmetry.hs

{- 1
- Tables of symmetry classes
-}
{-# Language GeneralizedNewtypeDeriving, ScopedTypeVariables,
ViewPatterns #-}
module Rubik.Symmetry where

import Rubik.Cube
import Rubik.Misc

import Control.DeepSeq
import Control.Monad

import Data.Binary.Storable

import Data.Foldable

import Data.List

import Data.Maybe

import Data.Ord

import qualified Data.Heap as H

import qualified Data.Vector as V

import qualified Data.Vector.Storable.Allocated as S

-— | Smallest representative of a symmetry class.
—-— (An element of the symClasses table)
type SymRepr a = RawCoord a

type SymClass' = Int

-— | Symmetry class. (Index of the smallest representative in
the symClasses table)

newtype SymClass symType a = SymClass { unSymClass :: SymClass'
}

deriving (Eq, Ord, Show)
type SymCoord sym a = (SymClass sym a, SymCode sym)
--— | An @Int@ representing a pair @ (Repr, Sym)@.

-- If @x = symClass * symOrder + symCode@,

20

-—- where @symClass :: SymClass@ is the index of the symmetry
class with

-- smallest representative @r :: SymRepr@ (for an arbitrary
order relation),

-- @symOrder@ is the size of the symmetry group,

—-— @symCode :: Sym@ is the index of a symmetry @s@;

—-— then @s*(-1) <> r <> s@ is the wvalue represented by @xQ.
type SymCoord' = Int

type SymOrder' = Int

newtype Action s a = Action [a -> a]
newtype SymClassTable s a = SymClassTable { unSymClassTable
S.Vector RawCoord' }

deriving (Eq, Ord, Show, Binary, NFData)
newtype SymReprTable s a = SymReprTable { unSymReprTable
S.Vector Int }

deriving (Eq, Ord, Show, Binary, NFData)
newtype SymMove s a = SymMove (S.Vector SymCoord')

deriving (Eq, Ord, Show, Binary, NFData)

type Symmetries sym a = MoveTag sym (V.Vector (RawMove a))

-— | Compute the table of smallest representatives for all
symmetry classes.
-- The @RawCoord'@ coordinate of that representative is a
@Repr@.
-— The table is sorted in increasing order.
symClasses

RawEncodable a

=> Action s a {- ~ Symmetry group, including the identity,

- represented by its action on @a@ -}
-> SymClassTable s a {- * Smallest representative -}

symClasses = SymClassTable . S.fromList . fmap unRawCoord
symClasses'
symClasses' :: forall a s. RawEncodable a => Action s a ->

[RawCoord a]
symClasses' action@ (Action sym)
= foldFilter (H.empty :: H.MinHeap (RawCoord a))
(fmap RawCoord [0 .. range action - 1])
where

21

foldFilter [] = T[]

foldFilter (H.view -> Nothing) (x : xs) = x : foldFilter
(heapOf x) xs
foldFilter (h@(H.view -> Just (y, ys))) (x : xs)
| x <y = x : foldFilter (H.union h (heapOf x)) xs
| otherwise = foldFilter ys xs
heapOf :: RawCoord a -> H.MinHeap (RawCoord a)
heapOf x
= let dx = decode x
nub' = map head . group . sort
in H.fromAscList . tail . nub' $ map (\z -> (encode . z)
dx) sym
symClassTable
Int

-> SymReprTable s a
-> SymClassTable s a
symClassTable nSym (SymReprTable s)

= SymClassTable . S.ifilter (==) $ S.map ('div’ nSym) s
symReprTable
forall a s t. (RawkEncodable a, Foldable t)
=> Int -- * Number of symmetries @nSym(@

-> (RawCoord a -> t (RawCoord a))
-> SymReprTable s a
symReprTable nSym £

= SymReprTable (symReprTable' (range ([] :: [a])) nSym f')
where
f' = fmap unRawCoord . toList . f . RawCoord

{-# INLINE symReprTable' #-}
symReprTable'
Foldable t
=> Int -- ~ Number of elements @n(@
-> Int -- ~ Number of symmetries @nSymQ@
-> (Int -> t Int) -- 7~ Q@f x@, symmetrical elements to @x@,
including itself
-> S.Vector Int
-- ~ @v@, where Q(y, i) = (v ! x) “divMod® nSym@ gives
-— the representative @y@ of the symmetry class of @xd
-- and the index of one symmetry mapping @x@ to @Qy@:

22

-—— > f x 'l i==y.
symReprTable' n nSym f
= S.create $ do
v <- S.replicate n (-1)
forM [0 .. n-1] $ \x -> do
let ys = £ x
y <- S.read v x

when (y == -1)
forM ((zip [0 ..] . toList . f) x) $ \(i, x")
S.write v x' (flatIndex nSym x i)

return v

symMoveTable
RawEncodable a
=> Action s a {- 7~ Symmetry group -}
-> SymClassTable s a {- ~ (Sorted) table of representatives
-}
-> (a -> a) {- »~ Endofunction to encode -}

-> SymMove s a
symMoveTable action@ (Action syms) classes f
= SymMove (S.map move (unSymClassTable classes))
where
n = length syms

move = flat . symCoord action classes . f . decode
RawCoord
flat (SymClass ¢, SymCode s) = flatIndex n c s

symMoveTable'

:: RawEncodable a

=> Int -- ©~ Symmetry group order

-> SymReprTable s a

-> SymClassTable s a

-> (a -> a)

-> SymMove s a
symMoveTable' nSym reps classes £

= SymMove (S.map move (unSymClassTable classes))

where

move = flat . symCoord' nSym reps classes . encode

decode . RawCoord

23

flat (SymClass ¢, SymCode s) = flatIndex nSym c s

{-# INLINE symMove #-}

symMove :: SymOrder' -> SymMove s a —-> SymClass s a -> SymCoord

S a

symMove n (SymMove v) (SymClass x) = (SymClass y, SymCode 1)
where (y, i) = (v S.! x) “divMod n

{-# INLINE symMove' #-}

symMove' n v (x, J) = (y, 1 ~composeSym 1)

where (y, i) = symMove n v X
reprToClass :: SymClassTable s a -> RawCoord a -> SymClass s a
reprToClass (SymClassTable cls) = SymClass . fromJust . flip
iFind cls . unRawCoord

-— | Find the representative as the one corresponding to the
smallest coordinate
symCoord :: RawEncodable a => Action s a -> SymClassTable s a
-> a -> SymCoord s a
symCoord (Action syms) classes x
= (reprToClass classes r, SymCode s)

where
xSym = [encode (s x) | s <- syms]
(r, s) = minimumBy (comparing fst) (zip xSym [0 ..])
symCoord' :: Int -> SymReprTable s a -> SymClassTable s a —->

RawCoord a -> SymCoord s a
symCoord' nSym (SymReprTable reps) (SymClassTable classes)
(RawCoord x)

= (SymClass r, SymCode 1i)

where
(v, 1) = (reps S.! x) "divMod nSym
r = fromJust $ iFind r classes
symToRaw

SymClassTable s a -> (RawCoord a -> SymCode s —-> RawCoord
a)
-> SymCoord s a -> RawCoord a
symToRaw (SymClassTable classes) sym (SymClass c, 1)
= sym (RawCoord (classes S.! c¢)) 1

24

sym

sym (MoveTag syms) r (SymCode i) =

TwoPhase.hs

{= |

{-# LANGUAGE RecordwWildCards,

module Rubik.Solver.TwoPhase where
import Rubik.Cube

import Rubik.Misc

import Rubik.Solver

import Rubik.Tables.Moves

import Rubik.Tables.Distances
import Data.Function (on)

import Data.Monoid

{-# INLINE phaselPro]j #-}
phaselPro’j

= rawProjection

| * |

rawProjection
rawProjection

phaselConvert = convertP phaselProj
phaselDist = maxDistance

[(\((,,) co _uds) -> (co, uds))
d CornerOrien UDSlice

, (\N((,,) _ eo uds) -> (eo, uds))

d EdgeOrien UDSlice
]

phasel Cube -> Move
phasel =
where

(rr)

moves =

syms V.! i

Symmetries s a -> RawCoord a -> SymCode s -> RawCoord a

'S r

Two phase algorithm to solve a Rubik's cube -}

ViewPatterns #-}

>5< distanceWith?

>$< distanceWith?2

solveWith movel8Names moves phaselProj phaselDist

movel8CornerOrien movel8EdgeOrien movel8UDSlice

25

-— | > phaselSolved (phasel c)

phaselSolved :: Cube -> Bool
phaselSolved = ((==) "on phaselConvert) iden
phase2Pro’j

= rawProjection
| *| rawProjection
| .| rawProjection

phase2Convert = convertP phase2Proj

phase2Dist = maxDistance

[(N((,,) cp _ udsp) -> (cp, udsp)) >$< distanceWith2
d CornerPermu UDSlicePermuZ2

, (N((,,) _ udep udsp) -> (udep, udsp)) >$< distanceWith?2
d _UDEdgePermuz UDSlicePermuZ2

]

phase2 :: Cube -> Move
phase?2 = solveWith movelONames moves phase2Proj phase2Dist
where
moves = (,,) movelOCornerPermu movelOUDEdgePermu?2

movelQUDSlicePermu?2

-— | > phaselSolved ¢ ==> phase2Solved (phase2 c)
phase2Solved :: Cube -> Bool
phase2Solved = (== iden)

-- | Solve a scrambled Rubik's cube.
-— Make sure the cube is actually solvable with
'Cubie.solvable',
-- before calling this function.
solve :: Cube -> Move
solve c =
let sl = phasel c
cl
s2
in reduceMove $ sl ++ s2

c <> moveToCube sl

phase?2 cl

26

Optimal.hs

module Rubik.Solver.Optimal where

import Rubik.Cube

import Rubik.Solver

import Rubik.Tables.Moves
import Rubik.Tables.Distances
import Rubik.Tables.Internal

import qualified Data.Vector.Generic as G

{-# INLINE optiProj #-}
optiProj
= fudsp |*| sfudsp |*| s sfudsp |*| co |*| sco |*| s sco
cp
where
fudsp = symProjFlipUDSlicePermu
sfudsp = s fudsp

co = rawProjection :: Projection' Movel8 CornerOrien
SCoO = s CoO

cp = symProjCornerPermu

s x = symmetricProj symmetry urf3 x

{-# INLINE optiDist #-}
optiDist = maxDistance
[maxOrEqualPlusOne

(\(Crvyrrs) fudsp co) =-> (fudsp, co)) >$<
fudsp co

r N((Gvyrry) fudsp co) -> (fudsp, co)) >S<
fudsp co

r NCGyyyry) _ _ fudsp _ _ co) -> (fudsp, co)) >S<
fudsp co

)

v NCGrrrras) co cp) —> (cp, co)) >$< cp_co

{-# INLINE maxOrEqualPlusOne #-}
maxOrEqualPlusOne (Distance f, Distance g, Distance h)

27

= Distance $ \x -> let a =f x ; b =g x; ¢c=hx
in if a == b && b == ¢ && a /= 0 then a + 1
else a max b "max c

solve :: Cube -> Move
solve = solveWith movel8Names moves optiProj optiDist
where
moves = (,,,,,,) M fudsp m fudsp m fudsp m co m co m co

movel8SymCornerPermu
m fudsp = movel8SymFlipUDSlicePermu
m co = movel8CornerOrien

{-# INLINE toldx #-}
toIdx = uncurry $ indexWithSym invertedSyml6CornerOrien (range
([] :: [CornerOrien]))

{-# INLINE fudsp co #-}

fudsp co = toldx >$< Distance (fromlIntegral

(dSym CornerOrien FlipUDSlicePermu G.!))

{-# INLINE cp co #-}

cp_co = toldx >$< Distance (dSym CornerOrien CornerPermu G.!)

Cubie.hs
{- |

Cubie representation.

A Rubik's cube is the cartesian product of a permutation of
cubies
and an action on their orientations.

-}

module Rubik.Cube.Cubie (
-— * Complete cube
CubeAction (..),
FromCube (..),
Cube (..),

—-— ** Solvability test
solvable,

28

-— * Corners
numCorners,

CornerPermu,
CornerOrien,
Corner (..),

-— ** (De)construction
cornerPermu,
cornerOrien,
fromCornerPermu,
fromCornerOrien,

-— * Edges
numkdges,

EdgePermu,
EdgeOrien,
Edge (..),

-— ** (De)construction
edgePermu,

edgeOrien,
fromEdgePermu,
fromEdgeOrien,

-—- * Conversions
stringOfCubeColors,
toFacelet,
colorFaceletsToCube,

-— * UDSlice
numUDS1icekdges,
UDSlicePermu,
UDSlice,
UDSlicePermu?2,
UDEdgePermu?,
FlipUDSlice,
FlipUDSlicePermu,

-— ** (De)construction
uDSlicePermu,
uDSlice,

29

uDSlicePermu?2,
uDEdgePermu?,
edgePermu2,
fromUDSlicePermu,
fromUDSlice,
fromUDSlicePermu?2,
fromUDEdgePermu?2,

—-— ** Symmetry
conjugateUDSlicePermu,
conjugateFlipUDSlice,
conjugateFlipUDSlicePermu,
conjugateCornerOrien

) where

import Rubik.Cube.Cubie.Internal

Facelet.hs

{= 1

Facelet representation

Facelets faces are unfolded and laid out like this:

@
U
L FRB
D
@

Faces (or colors) are ordered @U, L, F, R, B, D@.

A Rubik's cube is a permutation of facelets numbered as
follows:

o 1 2
3 4 5
6 7 8

9 10 11 18 19 20 27 28 29 36 37 38
12 13 14 21 22 23 30 31 32 39 40 41

30

15 16 17 24 25 26 33 34 35 42 43 44

>
>
> 45 46 47
> 48 49 50
> 51 52 53

-}

module Rubik.Cube.Facelet (
-— * Facelet permutation
numFacelets,
Facelets,
facelets,
fromFacelets,

-— * Colors
Color,
colorOf,
colorChar,

-— * Color 1list
ColorFacelets,
colorFacelets,
fromColorFacelets,
colorFaceletsOf,

-— * List conversions
fromFacelets',
facelets',
fromColorFacelets',
colorFacelets',
colorFacelets'',

-—- * Pretty conversion
stringOfFacelets,

stringOfColorFacelets,
stringOfColorFacelets',

—-— * Facelets corresponding to each cubie

-— | The first letter in the name of a cubie

is

31

-— the color of its reference facelet
-— (illustrated at @http://kociemba.org/math/cubielevel.htm@) .

-—- Corner colors are given in clockwise order.

-— Corners are lexicographically ordered
-— (QU>L>F>R>B>DQ@) .

-— Edges are gathered by horizontal slices (@U, D, UD@).

—-— ** Centers
centerFacelets,

-— ** Corners
cornerFacelets,
ulb, ufl, urf, ubr, dlf, dfr, drb, dbl,

-— ** Edges

edgeFacelets,

ul, uf, ur, ub, d1, df, dr, db, f£1, fr, bl, br
) where

import Rubik.Cube.Facelet.Internal

32

