
Parallel Functional Programming Fall 2021
Project Report – ParFifteenPuzzle

Kuan-Yao Huang - kh3120@columbia.edu
Aditya Sidharta - aks2266@columbia.edu

December 23, 2021

Problem Formulation

15 Puzzle is a sliding puzzle, which consists of (N × N , 15 puzzle has N = 4) square
tiles, where each squared tile is numbered from 1 to (N2 − 1), leaving a single square tile
empty. Tiles located adjacent to the empty tile can be moved by sliding them horizontally,
or vertically. The goal of the puzzle is to place the tiles in numerical order, leaving the last
tile at the bottom right corner of the frame.

It should be noted that not all of the initial state of 15 puzzle is solvable. 15 puzzle is
solvable if:

1. N is odd

2. N is even, and the blank tile is on the even / odd row (counting from the bottom row),
and the number of inversions is odd / even

Kuan-Yao Huang - Aditya Sidharta 1

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Inversion is defined as the number of pairs (a, b), where a > b, but a appears before b if
we were to flatten the number arrays into a single row. For example, [2 1 3 5 4 6 7 8] has 2
inversions (2, 1), (5, 4).

Methods - A* Algorithm and Other Sequential Implementation

Optimal Solution: Breadth-first-search

Breadth-first-search is the most widely used optimal solver for 15puzzle problem. Starting
from the initial state, we collect the neighbors into a queue, and then explore the neighbors
layer by layer. However, since number of possible states for 16 puzzle problem is 16!

2
=

20922789888000(and 24puzzle problem has 24!
2

= 7.76 × 1024). It is impractical to use this
method to solve 15puzzle problem.

Approximation Algorithm: Greedy Algorithm

Greedy algorithm can perform the approximation to this problem. First, we finish the first
two element of the puzzle, and then we solve the row from above to bottom sequentially.
However, this algorithm usually not giving as good enough steps.

A∗ Algorithm

Upon neighbor exploration, it is intuitive to choose the one that is the most ”similar” to
our final status. We can design a heuristic approach to measure the similarity between two
states as Manhattan/Hamming distance. So exploring the state with the best similarity can
help to accelerate the process.

We adopted the A∗ algorithm to help us minimize the effort to backtrack all the possible
steps. A∗ algorithm is an informed search algorithm, which aims to find a path to a given
goal node having the lowest cost c(n)

c(n) = f(n) + g(n)

Where f(n) is defined as the step used from start to the current state, and g(n) is the
heuristic function that estimates the cost of the cheapest path, attainable or not, from the
current state to the goal state. For this puzzle, the heuristic function is the sum of distances
between the current and the target entry of all digits. The distance metric can be Manhattan
distance or Hamming distance.

A priority queue of the possible configurations prioritizing minimal cost functions is kept
during solving. We iteratively pop the most heuristically probable configuration, compute
possible next steps and push them to the priority queue. The algorithm will stop when we
pop the goal state as seen on the following algorithm A. 1.

Kuan-Yao Huang - Aditya Sidharta 2

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Algorithm 1 A∗ algorithm

1: procedure ManhattanDistance(S)
2: cost ← 0
3: for i in 1 →N2 do
4: x, y ← divmod S[i]
5: targetx, targety ← divmod i
6: cost ← cost + ∥(x, y), (targetx, targety)∥1
7: end for
8: Return cost
9: end procedure
10: Input: Initial State × K
11: Output: Path length
12: procedure AStarAlgorithm(Si, Se)
13: HashMap ▷ storing visited states
14: PriorityQueue pq(Si, priority=ManhattanDistance(Si), length=0) ▷ candidates
15: while ! pq.empty() do
16: if pq.top().state == Se then
17: Return pq.top().length
18: end if
19: neighbors ← getNeighbors pq.top()
20: validNeighbors ← filter neighbors by mp
21: pq.pop()
22: for neighbor in validNeighbors do
23: cost ← ManhattanDistance(neighbor)
24: Add (neighbor, cost, length + 1) to pq
25: Add neighbor state to HashMap
26: end for
27: end while
28: Return −1
29: end procedure

Haskell Implementation

We design a puzzleState data type, including moves away from the start state, Manhattan
distance to the target state, position of the empty cell, and the current status.

1 -- | PuzzleState contains the current move (fn), distance to goal (gn),

current position of blank tile (zeroPos), and the current board state (

state)

2 data PuzzleState = PuzzleState {fn::Int ,

3 gn::Int ,

4 zeroPos ::Int ,

5 state ::Array U DIM1 Int} deriving (Show ,

Eq)

6

7 -- | cmpUboxarray performs comparison between two different arrays ,

perfomed by doing pairwise comparison across the subsequent values in

Kuan-Yao Huang - Aditya Sidharta 3

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

the two arrays

8 cmpUboxarray :: Array U DIM1 Int -> Array U DIM1 Int -> Ordering

9 cmpUboxarray a1 a2 = cmp a1 a2 0

10 where cmp a1 a2 idx | idx == R.size (R.extent a1) = GT

11 | a1!(Z :. idx) == a2!(Z :. idx) = cmp a1 a2 (idx

+1)

12 | otherwise = compare (a1!(Z :. idx)) (a2!(Z :.

idx))

13

14 -- | PuzzleState is ordered by the total incurred cost and distance to

goal (fn + gn). Else , it perform comparison between the two array

15 instance Ord PuzzleState where

16 PuzzleState a b _ s1 ‘compare ‘ PuzzleState c d _ s2 = if a+b /= c+d

then (a+b) ‘compare ‘ (c+d) else cmpUboxarray s1 s2

We introduced a Repa array of size N ∗ N for storing a state, so we can conveniently
generate a swapped array when moving the empty entry. In addition, we also define the
ordering between different states to help us compare the priority. The state with lower
fn + gn is prioritized when doing neighbor expansion.

We also introduced priority queue from package PSQueue and HashMap from unordered-
containers. We choose these packages based on their relative performances.

To measure the similarity between a state and target state, we introduced the Manhattan
distance, which can be efficiently computed. For example, the cost function of state1 4 2

3 0 5
6 7 8


with respect to 0 1 2

3 4 5
6 7 8


is 1(digit 1)+ 1(digit 4)+2 (digit 0) = 4. We also tried Hamming distance, but this metric
usually gives us an inferior performance.

1 -- | manhattanDist calculates the total distance of the current state (cur

) to the goal board with size (n), performing recurrsion using (idx)

2 manhattanDist :: Source r Int => Array r DIM1 Int -> Int -> Int -> Int

3 manhattanDist cur idx n | idx == R.size (R.extent cur) = 0

4 | otherwise = diff idx (cur ! (Z :. idx)) +

manhattanDist cur (idx+1) n

5 where diff x y = abs (x ‘mod ‘ n - y ‘mod ‘ n) + abs

(x ‘div ‘ n - y ‘div ‘ n)

6

7 -- | hammingDist calculates the number of wrong tiles of the current state

(cur) to the goal board with size (n), performing recursion using (idx

)

8 hammingDist :: Source r Int => Array r DIM1 Int -> Int -> Int ->Int

9 hammingDist cur idx n | idx == R.size (R.extent cur) = 0

10 | otherwise = diff idx (cur!(Z :. idx)) +

hammingDist cur (idx +1) n

Kuan-Yao Huang - Aditya Sidharta 4

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

11 where diff x y | x == y = 1

12 | otherwise = 0

Test Cases Generation

In this project, we have generated our test cases by python. Since even the best solver is
likely to take forever to solve some randomly generated cases using the A∗ algorithm. We
limit our test case that is less than 120 steps from the target configuration.

Method - Parallel Fifteen Puzzle Implementation

Unlike the other graph search/pathfinding algorithm, it is non-trivial for us to parallelize the
A∗ algorithm, as each time step, the algorithm will try to evaluate the state in the priority
queue with the lowest total cost f(n), and expand the neighbor of the chosen state and
pushing it back to the priority queue. Some of the difficulties in parallelizing this algorithm
are:

1. Parallel threads that work on a single priority queue might induce race conditions -
each thread needs to lock the priority queue to obtain the most potential state, and
lock the priority queue to push its neighbors. This will also inhibit concurrency as it
needs to queue to update the priority queue

2. To avoid redundancy in our computation, we employ Hash Map along with our A∗
algorithm to avoid repeated states visit. Therefore, to perform parallel algorithm, this
Hash-map will also potentially cause a race conditions without proper locking. This
might also inhibit concurrency.

3. Since there are many cases with the same c(n), it is possible for a top state in the
priority queue is not part of the optimal/shortest path. However, most of the states
with a high cost does not have a lot of potential. Therefore, this will only results in
wastage of computation if we do not choose the expansion strategy on the priority
queue carefully.

After brainstorming to solve the potential issues that we might face, we employ three
different parralelization strategy:

1. Parallelizing the Neighbor state calculation in each step of A* algortihm (ParNeighbor)

2. Parallelizing the number of Priority Queues used to solve a single puzzle (ParPQ)

3. Parallelizing the algorithm over k-puzzles (ParPuzzle)

Kuan-Yao Huang - Aditya Sidharta 5

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

ParNeighbor

The first parallelism strategy that comes into our mind for the A∗ algorithm is to perform
a parallel concurrent neighbor expansion, where the calculation of possible neighbors are
parallelized. Within the original sequential A* algorithm, the only ‘map‘ operation that
does not depend on the previous step is only on the calculation of possible neighboring state
and its cost function (Manhattan Distance). The parallelization attempt is given as follows:

getAllNeighborPar:: PuzzleState -> Int -> [PuzzleState]

getAllNeighborPar p n = catMaybes (runEval $ do

a <- rpar (getUpNeighbor p n)

b <- rpar (getDownNeighbor p n)

c <- rpar (getLeftNeighbor p n)

d <- rpar (getRightNeighbor p n)

return [a, b, c, d])

Nevertheless, as the Manhattan score calculation is not expensive, this will more likely
create a massive overhead from the spark and thread creations. Thus, we need to perform
parallelization using a different strategy.

ParPSQ

Intuitively, in each of the time step, its possible that the state that currently on top of the
priority queue might not be the most optimal path. In other words, in A* algorithm, its
possible that we stop exploring a certain path after we realize that the current path that we
explore is impossible to be the best path solution, and continue to explore the second best
path, and so on.

Thus, a more effective solution is to perform parallelization by creating multiple sparks
on expansion on the top-k (k <= ∥pq∥) elements of the priority queue, representing the
top-k potential path candidates. As explained in the previous paragraph, It is difficult for
us to perform this using a single priority because of the potential concurrency issue. To
avoid this, we then try to employ k-different priority queues to explore different k states
independently. In the implementation of this algorithm, the Hash Map was copied over to
each of the threads to avoid concurrent read-write issues on the Hash Map as well. We
realize that the choice of implementing independent, k-Hash Map for each of the threads
might cause a trade-off on the computation, as we need to recompute the same state as each
of the thread does not share the same hash map, but we realize that this might be the best
solution for now to avoid concurrency issues on Haskell Hash Map.

The algorithm is as follows

Kuan-Yao Huang - Aditya Sidharta 6

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Algorithm 2 Parallel PSQ

1: while PQ.size(pq) < k do
2: if pq.top().state == Starget then
3: Return pq.top().length
4: end if
5: neighbors ← getNeighbors pq.top()
6: validNeighbors ← filter neighbors by mp
7: pq.pop()
8: for neighbor in validNeighbors do
9: cost ← ManhattanDistance(neighbor)
10: Add (neighbor, cost, length + 1) to pq
11: Add neighbor state to HashMap
12: end for
13: end while
14: for s in pq do
15: Create a thread with ipq = (s), run Sequential A* algorithm on (ipq, HashMap)
16: end for
17: if any(complete(thread)) then
18: Kill all other threads
19: end if
20: Return result(thread)

One huge part of Haskell Strategies implementation is that it guarantees deterministic
parallelism, such that the result of the function is deterministic, despite the algorithm be-
ing evaluated in parallel setting. The original output of our sequential A* algorithm on
15-puzzle returns the number of steps taken to solve the puzzle. As ParPSQ will return
non-deterministic result when we use the original output, as any of the thread that is com-
pleted first might be outputted, we have changed the output for the ParPSQ algorithm,
outputting True if the puzzle is solvable, False otherwise. In this setting, we can guarantee
the determinism in our function.

ParPuzzle

Lastly, similar to the Sudoku solution discussed during the lecture, another obvious imple-
mentation of Parallelization is to leave the Sequential A* algorithm untouched, and instead
paralellize the solver over different puzzles. To regulate the number of sparks created and
to avoid buffer pool overflow, parBuffer was used. This implementation will achieve signif-
icant speed up as each of the thread will be able to solve the puzzle as fast as the sequential
implementation, i.e there are no sequential dependency in between two different puzzles.

parSolveKpuzzle:: Handle -> Int -> IO()

parSolveKpuzzle handle k = do

allpuzzles <- getAllPuzzles handle k

let result = map solveOnepuzzle allpuzzles ‘using‘ parBuffer 100 rseq

print result

Kuan-Yao Huang - Aditya Sidharta 7

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Evaluation and Results

ParNeighbor - Parallelizing Neighbor Expansion

ParallelPSQ (k=5)
1-Core 13.15
2-Core 13.38
3-Core 13.8
4-Core 14.7
5-Core 15.2

As expected, the parallel neighbor expansion does not work, as we see that the time taken
to complete 100 4x4 puzzle actually increase as we increase the number of cores. This is
expected, since the extra amount of overhead from spark creation when we increase the
number of cores outweighs the benefit of calculating the Manhattan distance in parallel.
Furthermore, as the number of possible neighbors in each step of A* algortihm is only four
(Swap blank tile above, below, left, and right), thus this algorithm will also not scale well
even though if it worked.

Figure 1: Parallel Neighbor core = 1

Figure 2: Parallel Neighbor core = 2

Kuan-Yao Huang - Aditya Sidharta 8

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Figure 3: Parallel Neighbor core = 3

Figure 4: Parallel Neighbor core = 4

Figure 5: Parallel Neighbor core = 5

As we can see from the threadscope graph, as we are calling this algorithm at each
timestep, even though in each timestep we are only calling up to 4 threads at the same time,

Kuan-Yao Huang - Aditya Sidharta 9

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

the number of calls that we made is huge, and thus the job seems to be well distributed
among all cores.

ParPSQ - Parallelizing k-Priority Queues

ParallelPSQ (k=5) Speedup Ideal
1-Core 27.54 1.00 1
2-Core 16.8 1.64 2
3-Core 10.54 2.61 3
4-Core 8.78 3.14 4
5-Core 6.3 4.37 5

The algorithm seems to work well, as it offers speedup as compared to the sequential algo-
rithm. This proves that the state in the priority queue that has the lowest cost f(n) in the
initial phase of the A* algorithm is not necessarily the best solution, as often the algorithm
find an optimal path in exploring k-th best state in the priority queue.

In our experiment, we are fixing the number of Parallel Queues to be 5. Thus, it is under-
standable that in the 1-Core scenario, we are actually performing worse as compared to the
sequential algorithm, as now the Parallel PSQ algorithm needs to interleave computation of
various priorities queues in a single core, causing the workload to be multiplied as compared
to the sequential algorithm implementation. However, as we increase the number of cores,
each of the core will be able to take up different priority queues, and terminating the algo-
rithm once any of the thread returns a result. Thus, this offers a significant improvement, up
to 4.37x the 1-core implementation of ParPSQ and roughly 2x as compared to the sequential
implementation. It is understandable that the performance is still sub par compared to the
embarrassingly parallel ParPuzzle algorithm, but nevertheless we are pretty delighted with
the result. We believe that increasing the number of cores as well as the number of priority
queues to a larger number will not yield any significant improvement to the final result due
to 2 reasons. Firstly, the Amdahl’s law states that there is a limit on the speedup on parallel
algorithm depending on the severity of the sequential fraction of the task. Secondly, we
believe that by increasing the number of priority queues, the extra thread that we create will

Kuan-Yao Huang - Aditya Sidharta 10

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

explore state that is less and less likely to be the optimal path, as it currently has a large
cost c(n) = f(n) + g(n). Thus, it is less likely to offers any speedup.

Figure 6: Parallel PSQ core = 1

Figure 7: Parallel PSQ core = 2

Figure 8: Parallel PSQ core = 3

Figure 9: Parallel PSQ core = 4

Kuan-Yao Huang - Aditya Sidharta 11

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Figure 10: Parallel PSQ core = 5

As shown in the figure above, there are no idle cores and the job seems to be distributed
well as long as the number of priorities queue that is used is bigger than the number of cores
used. In the case where it is smaller, it is possible that there will be idle time amongst any
of the cores as there are not enough jobs to be passed around.

ParPuzzle - Case Level Parallelism

The below is the result for case level parallelism

ParallelPuzzle Speedup Ideal
1-Core 12.73 1.00 1
2-Core 7.16 1.78 2
3-Core 5.2 2.45 3
4-Core 4.53 2.81 4
5-Core 4.15 3.07 5

The figures below shows the workload is nearly evenly distributed between each cores
except at the end of the task. There is no new spark generation after we scan through the
array by parBuffer 100 rseq, so the size of spark pool will have a peak at the begining
and decrease with time. We noticed that the barbage collection time increases as number of
threads increases.

Kuan-Yao Huang - Aditya Sidharta 12

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Figure 11: Parallel Puzzle core = 1

Figure 12: Parallel Puzzle core = 2

Figure 13: Parallel Puzzle core = 3

Kuan-Yao Huang - Aditya Sidharta 13

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Figure 14: Parallel Puzzle core = 4

Figure 15: Parallel Puzzle core = 5

We also using other strategy such as parList rseq, parList rpar, parBuffer 00 rpar,
their performances are comparable. If we decrease the parBuffer size to lower than 100, more
than one spark peak will be found since for this algorithm, we have exactly 100 sparks in for
case level parallelism.

Summary Table

Sequential ParallelNeighbor ParallelPSQ (k=5) ParallelPuzzle
1-Core 13.07 13.15 27.54 12.73
2-Core 12.89 13.38 16.8 7.16
3-Core 13.28 13.8 10.54 5.2
4-Core 13.8 14.7 8.78 4.53
5-Core 15.17 15.2 6.3 4.15

Kuan-Yao Huang - Aditya Sidharta 14

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Compared to Sequential Sequential ParallelNeighbor ParallelPSQ (k=5) ParallelPuzzle
1-Core 1.00 0.99 0.47 1.03
2-Core 1.01 0.98 0.78 1.83
3-Core 0.98 0.95 1.24 2.51
4-Core 0.95 0.89 1.49 2.89
5-Core 0.86 0.86 2.07 3.15

Compared to 1-Core Sequential ParallelNeighbor ParallelPSQ (k=5) ParallelPuzzle
1-Core 1.00 1.00 1.00 1.00
2-Core 1.01 0.98 1.64 1.78
3-Core 0.98 0.95 2.61 2.45
4-Core 0.95 0.89 3.14 2.81
5-Core 0.86 0.87 4.37 3.07

Conclusion

It is rewarding to challenge a problem that is not easily parallelizable. Our experiments show
parallelism can help with exploring a better search path that is heuristically less favorable. In
our quest to parallelize the A∗ algorithm for 15 puzzle problems, we found the main obstacle
hindering us to implement a high-efficiency algorithm is the non-deterministic nature of
Haskell. In addition, we tried several different parallelization methods and found not all of
them are worth parallelization. Thirdly, we found balancing workload from different cores
is nontrivial and needs efforts on experiments. Last but not least, we learn a lesson about
the separability between algorithm and parallelism in Haskell.

Future Works

The main issue with our implementation is that our parallel solver may do repeated jobs. If
there is a shared hashmap supporting insertion and lookup concurrently, it is very likely to
improve our solver. That especially holds for complex puzzles.

We made an effort to documentation on this project, as seen in the directory doc/ and
README.md. In addition, We are willing to make this directory public.

Reference Materials

• https://guptaanna.github.io/15418Project/

• https://en.wikipedia.org/wiki/15_puzzle

• https://git.pandolar.top/imshubhamsingh/15-puzzle

• https://en.wikipedia.org/wiki/Admissible_heuristic

Kuan-Yao Huang - Aditya Sidharta 15

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

Appendix: Code and Unit Tests

ParallelPuzzle.sh Case Level Parallelism

1 module ParallelPuzzle where

2

3 import Solver (parSolveKpuzzle)

4 import Parse (readInt)

5 import System.Exit(die)

6 import System.Environment(getArgs , getProgName)

7 import System.IO(openFile , IOMode(ReadMode))

8

9 main :: IO ()

10 main = do

11 args <- getArgs

12 case args of

13 [filename] -> do

14 handle <- openFile filename ReadMode

15 k <- readInt handle

16 parSolveKpuzzle handle k

17 _ -> do

18 pn <- getProgName

19 die $ "Usage: "++pn++" <filename >"

ParallelNeighbor.sh Paralleling Neighbor Expansion

1 module ParallelNeighbor where

2

3 import Solver (parNeighborSolveKpuzzle)

4 import Parse (readInt)

5 import System.Exit(die)

6 import System.Environment(getArgs , getProgName)

7 import System.IO(openFile , IOMode(ReadMode))

8

9 main :: IO ()

10 main = do

11 args <- getArgs

12 case args of

13 [filename] -> do

14 handle <- openFile filename ReadMode

15 k <- readInt handle

16 parNeighborSolveKpuzzle handle k

17 _ -> do

18 pn <- getProgName

19 die $ "Usage: "++pn++" <filename >"

ParallelPriorityQueue.sh Paralleling k-Priority Queue

1 module ParallelPriorityQueue where

2

3 import Solver (parPSQSolvePuzzle)

4 import Parse (readInt)

5 import System.Exit(die)

6 import System.Environment(getArgs , getProgName)

Kuan-Yao Huang - Aditya Sidharta 16

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

7 import System.IO(openFile , IOMode(ReadMode))

8

9 main :: IO ()

10 main = do

11 args <- getArgs

12 case args of

13 [filename] -> do

14 handle <- openFile filename ReadMode

15 k <- readInt handle

16 parPSQSolvePuzzle handle k

17 _ -> do

18 pn <- getProgName

19 die $ "Usage: "++pn++" <filename >"

Solver.hs

1 {-# LANGUAGE FlexibleContexts # -}

2

3 module Solver where

4 import System.IO (hGetLine , Handle)

5 import Data.PSQueue as PQ (PSQ , singleton , prio , size , findMin , deleteMin ,

key , insert , toList)

6 import Data.Maybe (fromJust , catMaybes)

7 import Data.HashMap.Strict as H (HashMap , singleton , member , lookup ,

insert)

8 import Data.Array.Repa as R (Array , U, DIM1 , fromListUnboxed , Z (Z), (:.)

((:.)), (!), index , Shape (size), Source (extent), DIM0 , zipWith , D,

computeUnboxedS)

9 import Data.List (zip4)

10 import Control.Monad (forM , void)

11 import Control.Parallel.Strategies(rpar , using , parList , rseq , parBuffer)

12 import Control.Concurrent (newEmptyMVar , newMVar , forkIO , tryPutMVar ,

takeMVar , putMVar , readMVar , killThread)

13 import GHC.IO (unsafePerformIO)

14

15 import Puzzle (PuzzleState , PuzzleState(PuzzleState , gn , fn , state),

getZeroPos , swapTwo , getAllNeighbor , getAllNeighborPar , solvability)

16 import Metrics (manhattanDist)

17 import Parse (readInt , getStateVector , getAllPuzzles)

18

19 -- | getValidNeighbor filters all neighbor puzzles that improves (fn) or

have not been discovered previously (not in mp)

20 getValidNeighbor ::[PuzzleState] -> H.HashMap String Int -> [PuzzleState]

21 getValidNeighbor ps mp = filter (filterInMap mp) ps

22

23 -- | filterInMap returns True if the puzzle (puzzle) is not in the HashMap

(mp) or if the puzzle can now be reached in less steps (fn)

24 filterInMap :: HashMap String Int -> PuzzleState -> Bool

25 filterInMap mp puzzle = not (H.member key mp) || fromJust (H.lookup key mp

) > fn puzzle

26 where key = getHashKey $ state puzzle

27

28 -- | addMap add all of the puzzle states (ps) into the given HashMap (mp)

29 addMap :: Foldable t => t PuzzleState -> HashMap String Int -> HashMap

Kuan-Yao Huang - Aditya Sidharta 17

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

String Int

30 addMap ps mp = foldr (\ p -> H.insert (getHashKey (state p)) (fn p)) mp ps

31

32 -- | addPSQ adds all of the given puzzle states (ps) into the

PriorityQueue (psq)

33 addPSQ :: [PuzzleState] -> PSQ PuzzleState Int -> PSQ PuzzleState Int

34 addPSQ ps psq = foldr(\ p -> PQ.insert p (fn p + gn p)) psq ps

35

36 -- | getHashKey turns the hash result from the given array (li) and return

string as the hash key. hash [0, 3, 1, 2] -> "00030102"

37 getHashKey :: Array U DIM1 Int -> String

38 getHashKey li = show $ hash li 0

39

40 -- | hash perform simple hash function on the given array (l), using

recursive function on idx. hash [0, 3, 1, 2] -> "00030102"

41 hash :: Integral a => Array U DIM1 Int -> Int -> a

42 hash l idx | (Z:.idx) == R.extent l = 0

43 | otherwise = fromIntegral (l!(Z:.idx)) + 100 * hash l (idx

+1)

44

45 -- | solveBool perform sequential solving on 8-puzzle using A* algorithm ,

returning True if the puzzle is solvable

46 solveBool :: (PSQ PuzzleState Int , Array U DIM1 Int , Int , H.HashMap

String Int)-> IO Bool

47 solveBool (psq , target , n, mp) = do

48 let top = fromJust $ findMin psq

49 npsq = deleteMin psq

50 depth = fn $ key top

51 curarray = state $ key top

52

53 -- if PQ.size psq == 0 then

54 if PQ.size psq == 0 then

55 return False

56 else if curarray == target then

57 return True

58 else do

59 let neighborList = getAllNeighbor (key top) n

60 validNeighborList = getValidNeighbor neighborList mp

61 newmap = addMap validNeighborList mp

62 newpsq = addPSQ validNeighborList npsq

63 solveBool (newpsq , target , n, newmap)

64

65 -- | solve perform sequential solving on 8-puzzle using A* algorithm

66 solve :: (PSQ PuzzleState Int , Array U DIM1 Int , Int , H.HashMap String

Int)-> IO Int

67 solve (psq , target , n, mp) = do

68 let top = fromJust $ findMin psq

69 npsq = deleteMin psq

70 depth = fn $ key top

71 curarray = state $ key top

72

73 -- if PQ.size psq == 0 then

74 if PQ.size psq == 0 then

75 return (-1)

Kuan-Yao Huang - Aditya Sidharta 18

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

76 else if curarray == target then

77 return depth

78 else do

79 let neighborList = getAllNeighbor (key top) n

80 validNeighborList = getValidNeighbor neighborList mp

81 newmap = addMap validNeighborList mp

82 newpsq = addPSQ validNeighborList npsq

83 solve (newpsq , target , n, newmap)

84

85 -- | solveOnepuzzle perform solving on a single 8-puzzle

86 solveOnepuzzle :: (Int , [Int]) -> Int

87 solveOnepuzzle (n, state) | solvable = unsafePerformIO $ solve (psq ,

target , n, mp)

88 | otherwise = -1

89 where array = fromListUnboxed (Z :. (n*n) :: DIM1) state

90 target = fromListUnboxed (Z :. (n*n) :: DIM1) [0..(n*n-1)]

91 gn = manhattanDist array 0 n

92 psq = PQ.singleton (PuzzleState 0 gn (getZeroPos array 0) array

) gn

93 mp = H.singleton (getHashKey array) 0 -- a hashmap storing

visited states -> fn

94 solvable = solvability array (getZeroPos array 0) n

95

96 -- | solveParNeighbor perform solving by parallelizing the calculation of

GetAllNeighbor into 4 different threads

97 solveParNeighbor :: (PSQ PuzzleState Int , Array U DIM1 Int , Int , H.

HashMap String Int)-> IO Int

98 solveParNeighbor (psq , target , n, mp) = do

99 let top = fromJust $ findMin psq

100 npsq = deleteMin psq

101 depth = fn $ key top

102 curarray = state $ key top

103

104 -- if PQ.size psq == 0 then

105 if PQ.size psq == 0 then

106 return (-1)

107 else if curarray == target then

108 return depth

109 else do

110 let neighborList = getAllNeighborPar (key top) n

111 validNeighborList = getValidNeighbor neighborList mp

112 newmap = addMap validNeighborList mp

113 newpsq = addPSQ validNeighborList npsq

114 solveParNeighbor (newpsq , target , n, newmap)

115

116 -- | solveParPSQ perform solving by creating multiple priority queues and

abort the other thread once we have solved the puzzle

117 solveParPSQ :: (PSQ PuzzleState Int , Array U DIM1 Int , Int , HashMap String

Int) -> IO Int

118 solveParPSQ (psq , target , n, mp) = do

119 let top = fromJust $ findMin psq

120 npsq = deleteMin psq

121 depth = fn $ key top

122 curarray = state $ key top

Kuan-Yao Huang - Aditya Sidharta 19

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

123 k = 5

124

125 -- if PQ.size psq == 0 then

126 if PQ.size psq == 0 then

127 return (-1)

128 else if curarray == target then

129 return 1

130 else if PQ.size psq < k then do

131 let neighborList = getAllNeighbor (key top) n

132 validNeighborList = getValidNeighbor neighborList mp

133 newmap = addMap validNeighborList mp

134 newpsq = addPSQ validNeighborList npsq

135 solveParPSQ (newpsq , target , n, newmap)

136 else do

137 let length = PQ.size psq

138 resultV <- newEmptyMVar

139 runningV <- newMVar length

140 threads <- forM [PQ.singleton (key x) (prio x) | x <- PQ.toList

psq] $ \ipsq -> forkIO $ do

141 if unsafePerformIO(solveBool(ipsq , target , n, mp)) then void (

tryPutMVar resultV 1) else (do m <- takeMVar runningV

142

if m == 1

143

then void (tryPutMVar resultV 0)

144

else putMVar runningV (m-1))

145 result <- readMVar resultV

146 mapM_ killThread threads

147 return result

148

149

150 -- | puzzleSolver is the base function for other solver

151 puzzleSolver :: (Num a, Show a, Num v) => Handle -> Int -> ((PSQ

PuzzleState Int , Array U DIM1 Int , Int , HashMap String v) -> IO a) ->

IO ()

152 puzzleSolver handle 0 solver = return ()

153 puzzleSolver handle k solver = do

154 n <- readInt handle

155 matrix <- getStateVector handle n n

156 let array = fromListUnboxed (Z :. (n*n) :: DIM1) $ concat matrix

157 target = fromListUnboxed (Z :. (n*n) :: DIM1) [0..(n*n-1)]

158 gn = manhattanDist array 0 n

159 psq = PQ.singleton (PuzzleState 0 gn (getZeroPos array 0) array

) gn

160 mp = H.singleton (getHashKey array) 0 -- a hashmap storing

visited states -> fn

161 solvable = solvability array (getZeroPos array 0) n

162

163 step <- if solvable then solver (psq , target , n, mp) else return (-1)

164 print step

165

166 puzzleSolver handle (k-1) solver

167

Kuan-Yao Huang - Aditya Sidharta 20

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

168

169 -- | solveKpuzzle perform solving on mutliple 8-puzzle in a sequential

manner

170 solveKpuzzle :: Handle -> Int -> IO ()

171 solveKpuzzle handle k = puzzleSolver handle k solve

172

173 -- | parSolveKpuzzle perform solving on mutliple 8-puzzle in a parallel

manner , by sparking different threads to solve different puzzles

174 parSolveKpuzzle :: Handle -> Int -> IO()

175 parSolveKpuzzle handle k = do

176 allpuzzles <- getAllPuzzles handle k

177 let result = map solveOnepuzzle allpuzzles ‘using ‘ parBuffer 100 rseq

-- ‘using ‘ parList rseq

178 print result

179

180 -- | parNeighborSolveKpuzzle perform solving on multiple 80 puzzle in a

parallel manner , by sparking different threads to calculate the valid

Neighbors

181 parNeighborSolveKpuzzle :: Handle -> Int -> IO()

182 parNeighborSolveKpuzzle handle k = puzzleSolver handle k solveParNeighbor

183

184 -- | parPSQSolvePuzzle is an interface to parPSQ

185 parPSQSolvePuzzle :: Handle -> Int -> IO()

186 parPSQSolvePuzzle handle k = puzzleSolver handle k solveParPSQ

Puzzle.hs

1 {-# LANGUAGE FlexibleContexts # -}

2 module Puzzle where

3 import Data.Array.Repa as R (Array , U, DIM1 , fromListUnboxed , Z (Z), (:.)

((:.)), (!), index , Shape (size), Source (extent), DIM0 , zipWith , D,

computeUnboxedS)

4 import System.Random (mkStdGen)

5 import System.Random.Shuffle (shuffle ’)

6 import Metrics (manhattanDist)

7 import Data.Maybe (catMaybes)

8 import Control.Parallel.Strategies (runEval , rpar)

9

10 -- | PuzzleState contains the current moves (fn), distance to goal (gn),

current position of blank tile (zeroPos), and the current board state (

state)

11 data PuzzleState = PuzzleState {fn::Int ,

12 gn::Int ,

13 zeroPos ::Int ,

14 state ::Array U DIM1 Int} deriving (Show ,

Eq)

15

16 -- | cmpUboxarray performs comparison between two different arrays ,

perfomed by doing pairwise comparison across the subsequent values in

the two arrays

17 cmpUboxarray :: Array U DIM1 Int -> Array U DIM1 Int -> Ordering

18 cmpUboxarray a1 a2 = cmp a1 a2 0

19 where cmp a1 a2 idx | idx == R.size (R.extent a1) = GT

20 | a1!(Z :. idx) == a2!(Z :. idx) = cmp a1 a2 (idx

Kuan-Yao Huang - Aditya Sidharta 21

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

+1)

21 | otherwise = compare (a1!(Z :. idx)) (a2!(Z :.

idx))

22

23 -- | PuzzleState is ordered by the total incurred cost and distance to

goal (fn + gn). Else , it perform comparison between the two array

24 instance Ord PuzzleState where

25 PuzzleState a b _ s1 ‘compare ‘ PuzzleState c d _ s2 = if a+b /= c+d

then (a+b) ‘compare ‘ (c+d) else cmpUboxarray s1 s2

26

27 -- | generateArrays returns k number of shuffled matrix of size n for the

input of 15-puzzle problem

28 generateArrays :: (Num a, Enum a) => Int -> a -> [[a]]

29 generateArrays 0 _ = []

30 generateArrays k n = let xs = [0..(n * n - 1)] in shuffle ’ xs (length xs)

(mkStdGen k) : generateArrays (k -1) n

31

32 -- | formatArray takes the array (a) and the size of the puzzle (n) and

return it as a string , according to the input text format of this

program

33 formatArray :: [Int] -> Int -> String

34 formatArray [] n = ""

35 formatArray a n = unwords (map show (take n a)) ++ "\n" ++ formatArray (

drop n a) n

36

37 -- | formatArrays takes the arrays (a:as) and return it as a string

according to the input text format of this program

38 formatArrays :: [[Int]] -> String

39 formatArrays [] = ""

40 formatArrays (a:as) = show n ++ "\n" ++ formatArray a n ++ formatArrays as

41 where

42 n = floor(sqrt(fromIntegral(length a))) :: Int

43

44 -- | writeArrays takes the arrays and write it into the filename according

to the input text format of this program

45 writeArrays :: [[Int]] -> FilePath -> IO ()

46 writeArrays arrays filename =

47 writeFile filename (show n ++ "\n" ++ formatArrays arrays)

48 where

49 n = length arrays

50

51

52 -- | getZeroPos returns the idx within the given array (arr) where the

blank tile is located. If fail , return -1

53 getZeroPos :: Source r Int => Array r DIM1 Int -> Int -> Int

54 getZeroPos arr idx | idx == R.size (R.extent arr) = -1

55 | arr!(Z :. idx) == 0 = idx

56 | otherwise = getZeroPos arr (idx+1)

57

58 -- | swapTwo perform swap between two elements in the array (arr), given

two indexes , f and s in the array

59 swapTwo :: Source r Int => Int -> Int -> Array r DIM1 Int -> Array D DIM1

Int

60 swapTwo f s arr = R.zipWith (\x y->

Kuan-Yao Huang - Aditya Sidharta 22

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

61 if x == f then arr!(Z :. s)

62 else if x == s then arr!(Z :. f)

63 else y) (fromListUnboxed sh [0..(R.size sh -1)]) arr

64 where sh = R.extent arr

65

66

67 -- | getUpNeighbor return the subsequent PuzzleState by swapping the blank

tile with the tile above it. If its impossible , return Nothing

68 getUpNeighbor :: PuzzleState -> Int -> Maybe PuzzleState

69 getUpNeighbor (PuzzleState f g ze reparray) n | row < 0 = Nothing

70 | otherwise = Just $
PuzzleState (f+1) newg (row*n+col) newarray

71 where oldrow = ze ‘div ‘ n

72 row = oldrow - 1

73 col = ze ‘mod ‘ n

74 newarray = computeUnboxedS $ swapTwo (oldrow*n+col) (row*n+col)

reparray

75 newg = manhattanDist newarray 0 n

76

77 -- | getDownNeighbor return the subsequent PuzzleState by swapping the

blank tile with the tile below it. If its impossible , return Nothing

78 getDownNeighbor :: PuzzleState -> Int -> Maybe PuzzleState

79 getDownNeighbor (PuzzleState f g ze reparray) n | row >= n = Nothing

80 | otherwise = Just $
PuzzleState (f+1) newg (row*n+col) newarray

81 where oldrow = ze ‘div ‘ n

82 row = oldrow + 1

83 col = ze ‘mod ‘ n

84 newarray = computeUnboxedS $ swapTwo (oldrow*n+col) (row*n+col)

reparray

85 newg = manhattanDist newarray 0 n

86

87 -- | getLeftNeighbor return the subsequent PuzzleState by swapping the

blank tile with the tile left to it. If its impossible , return Nothing

88 getLeftNeighbor :: PuzzleState -> Int -> Maybe PuzzleState

89 getLeftNeighbor (PuzzleState f g ze reparray) n | col < 0 = Nothing

90 | otherwise = Just $
PuzzleState (f+1) newg (row*n+col) newarray

91 where oldcol = ze ‘mod ‘ n

92 row = ze ‘div ‘ n

93 col = oldcol - 1

94 newarray = computeUnboxedS $ swapTwo (row*n+oldcol) (row*n+col)

reparray

95 newg = manhattanDist newarray 0 n

96

97 -- | getRightNeighbor return the subsequent PuzzleState by swapping the

blank tile with the tile right to it. If its impossible , return Nothing

98 getRightNeighbor :: PuzzleState -> Int -> Maybe PuzzleState

99 getRightNeighbor (PuzzleState f g ze reparray) n | col >=n = Nothing

100 | otherwise = Just $
PuzzleState (f+1) newg (row*n+col) newarray

101 where oldcol = ze ‘mod ‘ n

102 row = ze ‘div ‘ n

103 col = oldcol + 1

Kuan-Yao Huang - Aditya Sidharta 23

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

104 newarray = computeUnboxedS $ swapTwo (row*n+oldcol) (row*n+col)

reparray

105 newg = manhattanDist newarray 0 n

106

107 -- | getAllNeighbor return all of the neighboring state of the current

PuzzleState

108 getAllNeighbor :: PuzzleState -> Int -> [PuzzleState]

109 getAllNeighbor p n = [x | Just x <- [getUpNeighbor p n, getDownNeighbor p

n, getLeftNeighbor p n, getRightNeighbor p n]]

110

111

112 -- | getAllNeighborPar return all of the neighboring state of the current

PuzzleState

113 getAllNeighborPar :: PuzzleState -> Int -> [PuzzleState]

114 getAllNeighborPar p n = catMaybes (runEval $ do

115 a <- rpar (getUpNeighbor p n)

116 b <- rpar (getDownNeighbor p n)

117 c <- rpar (getLeftNeighbor p n)

118 d <- rpar (getRightNeighbor p n)

119 return [a, b, c, d])

120

121

122 -- | numinv check the number of inversions in the board (arr)

123 numinv :: Array U DIM1 Int -> Int

124 numinv arr = aux arr 0 1 0

125 where aux arr i j r | i == R.size (R.extent arr) = r

126 | j == R.size (R.extent arr) = aux arr (i+1) (i+2)

r

127 | arr!(Z:.i) == 0 || arr!(Z:.j) == 0 = aux arr i (

j+1) r

128 | arr!(Z:.i) > arr!(Z:.j) = aux arr i (j+1) r

129 | arr!(Z:.i) < arr!(Z:.j) = aux arr i (j+1) (r+1)

130 | otherwise = error "inversion error!"

131

132 -- | solvability checks whether the given board (arr) with the current

zero position (zeropos) is solvable 8-puzzle problem

133 solvability :: Array U DIM1 Int -> Int -> Int -> Bool

134 solvability arr zeropos n | odd n && even (numinv arr) = True

135 | even n && even (zeropos ‘div ‘ n + 1) && even (

numinv arr) = True

136 | even n && odd (zeropos ‘div ‘ n + 1) && odd (

numinv arr) = True

137 | otherwise = False

Parse.hs

1 module Parse where

2

3 import System.IO (hGetLine , Handle)

4

5 -- | readInt parse the input handle and return an Integer from its first

line

6 readInt :: Handle -> IO Int

7 readInt handle = do

Kuan-Yao Huang - Aditya Sidharta 24

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

8 str <- hGetLine handle

9 return (read str::Int)

10

11 -- | printList print a given list (l) into IO

12 printList ::Show a =>[a] -> IO ()

13 printList l =

14 print $ show l

15

16 -- | getStateVector parse the input handle and return lists of list of

integer , which is the initial game board

17 getStateVector :: Handle -> Int -> Int -> IO [[Int]]

18 getStateVector handle n 0 = return []

19 getStateVector handle n cur = do

20 line <- hGetLine handle

21 let tokens = (\x -> read x::Int) <$> words line

22 post <- getStateVector handle n (cur -1)

23 return (tokens:post)

24

25 -- | GetAllPuzzles read all of the matrices in the handle and return a

list of (n, array) where n is the size of the puzzle and array is the

initial state of puzzle

26 getAllPuzzles :: Handle -> Int -> IO [(Int , [Int])]

27 getAllPuzzles handle 0 = return []

28 getAllPuzzles handle k = do

29 n <- readInt handle

30 matrix <- getStateVector handle n n

31 latter <- getAllPuzzles handle (k-1)

32 return ((n, concat matrix): latter)

Metrics.hs

1 {-# LANGUAGE FlexibleContexts # -}

2 module Metrics where

3 import Data.Array.Repa as R (Array , U, DIM1 , fromListUnboxed , Z (Z), (:.)

((:.)), (!), index , Shape (size), Source (extent), DIM0 , zipWith , D,

computeUnboxedS)

4

5 -- | manhattanDist calculates the total distance of the current state (cur

) to the goal board with size (n), performing recurrsion using (idx)

6 manhattanDist :: Source r Int => Array r DIM1 Int -> Int -> Int -> Int

7 manhattanDist cur idx n | idx == R.size (R.extent cur) = 0

8 | otherwise = diff idx (cur ! (Z :. idx)) +

manhattanDist cur (idx+1) n

9 where diff x y = abs (x ‘mod ‘ n - y ‘mod ‘ n) + abs

(x ‘div ‘ n - y ‘div ‘ n)

10

11 -- | hammingDist calculates the number of wrong tiles of the current state

(cur) to the goal board with size (n), performing recursion using (idx

)

12 hammingDist :: Source r Int => Array r DIM1 Int -> Int -> Int ->Int

13 hammingDist cur idx n | idx == R.size (R.extent cur) = 0

14 | otherwise = diff idx (cur!(Z :. idx)) +

hammingDist cur (idx +1) n

15 where diff x y | x == y = 1

Kuan-Yao Huang - Aditya Sidharta 25

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

16 | otherwise = 0

Test case generator

1 import random

2 import numpy as np

3

4 dirs = [-1,0,1,0,-1]

5

6 def swapzero(step , n):

7 arr = np.array([i for i in range(n*n)])

8 x , y = 0, 0

9 for _ in range(step):

10 d = random.randint (0,3)

11 dx = x + dirs[d]

12 dy = y + dirs[d+1]

13 if dx >= 0 and dy >= 0 and dx < n and dy < n:

14 tmp = arr[x*n+y]

15 arr[x*n+y] = arr[dx*n+dy]

16 arr[dx*n+dy] = tmp

17 x = dx

18 y = dy

19 return arr

20

21

22 if __name__ == ’__main__ ’:

23

24 case_num = 100

25 outfile = "./ input.txt"

26

27 with open(outfile , ’w’) as f:

28 f.write(f"{case_num }\n")

29 for i in range(case_num):

30 size = 4

31 f.write(f"{size}\n")

32 l = swapzero (80, size)

33 for i in range(l.shape [0]):

34 if (i+1) % size == 0:

35 f.write(f"{l[i]}\n")

36 else:

37 f.write(f"{l[i]} ")

Unit Test

1 import Test.Tasty (defaultMain , testGroup , TestTree)

2 import Test.Tasty.HUnit (testCase , assertEqual , Assertion , (@?=))

3 import Lib (numinv , getAllNeighborPar , solvability , getStateVector ,

getValidNeighbor , readInt , solveKpuzzle , generateArrays , formatArray ,

formatArrays , manhattanDist , hammingDist , getZeroPos , swapTwo ,

getUpNeighbor , PuzzleState (PuzzleState), getRightNeighbor ,

getLeftNeighbor , getDownNeighbor , getAllNeighbor , hash , getHashKey ,

addMap)

4 import System.IO (openFile , IOMode (ReadMode))

5 import Data.Array.Repa (DIM1 , fromListUnboxed , Z (Z), (:.) ((:.)), Array ,

U, computeS)

Kuan-Yao Huang - Aditya Sidharta 26

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

6 import Data.HashMap.Strict as H (fromList , singleton)

7 import Data.PSQueue as PQ (fromList , singleton)

8

9 main :: IO ()

10 main = defaultMain unitTests

11

12 unitTests = testGroup "Unit Tests" [

13 testCase "getStateVectorTest" getStateVectorTest ,

14 testCase "generateArraysTest" generateArraysTest ,

15 testCase "formatArrayTest" formatArrayTest ,

16 testCase "formatArraysTest" formatArraysTest ,

17 testCase "manhattanDistTest" manhattanDistTest ,

18 testCase "hammingDistTest" hammingDistTest ,

19 testCase "getZeroPosTest" getZeroPosTest ,

20 testCase "swapTwoTest" swapTwoTest ,

21 testCase "getUpNeighborTest" getUpNeighborTest ,

22 testCase "getDownNeighborTest" getDownNeighborTest ,

23 testCase "getLeftNeighborTest" getLeftNeighborTest ,

24 testCase "getRightNeighborTest" getRightNeighborTest ,

25 testCase "getAllNeighborTest" getAllNeighborTest ,

26 testCase "getAllNeighborParTest" getAllNeighborParTest ,

27 testCase "hashTest" hashTest ,

28 testCase "getHashKeyTest" getHashKeyTest ,

29 testCase "addMapTest" addMapTest ,

30 testCase "getValidNeighborTest" getValidNeighborTest ,

31 testCase "numinvTest" numinvTest ,

32 testCase "solvabilityTest" solvabilityTest]

33

34 getStateVectorTest :: Assertion

35 getStateVectorTest = do

36 x <- fn "test/test.txt"

37 x @?= [0,4,2,1,3,8,6,5,7]

38 where fn filename = do

39 handle <- openFile filename ReadMode

40 do

41 k <- readInt handle

42 n <- readInt handle

43 print n

44 matrix <- getStateVector handle n n

45 let array = concat matrix

46 return array

47

48

49 generateArraysTest :: Assertion

50 generateArraysTest = do

51 generateArrays 3 3 @?=

[[6,8,1,7,2,5,3,0,4],[7,0,8,1,4,3,2,5,6],[5,3,2,7,6,8,0,1,4]]

52 generateArrays 2 2 @?= [[3,2,1,0],[1,3,0,2]]

53

54 formatArrayTest :: Assertion

55 formatArrayTest = do

56 formatArray [1,2,3,4] 2 @?= "1 2\n3 4\n"

57 formatArray [1,2,3,4] 4 @?= formatArray [1,2,3,4] 6

58

Kuan-Yao Huang - Aditya Sidharta 27

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

59 formatArraysTest :: Assertion

60 formatArraysTest =

61 formatArrays [[1,2,3,4],[1,2,3,4,5,6,7,8,9]] @?= "2\n1 2\n3 4\n3\n1 2

3\n4 5 6\n7 8 9\n"

62

63 manhattanDistTest :: Assertion

64 manhattanDistTest = do

65 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

66 manhattanDist x 0 2 @?= 4

67

68 hammingDistTest :: Assertion

69 hammingDistTest = do

70 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

71 hammingDist x 0 2 @?= 2

72

73 getZeroPosTest :: Assertion

74 getZeroPosTest = do

75 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

76 getZeroPos x 0 @?= 3

77 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,0,1,2]

78 getZeroPos y 0 @?= 1

79

80 swapTwoTest :: Assertion

81 swapTwoTest = do

82 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

83 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

84 computeS (swapTwo 0 3 x) @?= y

85

86 getUpNeighborTest :: Assertion

87 getUpNeighborTest = do

88 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

89 let puzx = PuzzleState 0 0 0 x

90 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

91 let puzy = PuzzleState 0 0 3 y

92 let res = fromListUnboxed (Z :. (2*2) :: DIM1) [3,0,2,1]

93 let puzres = PuzzleState 1 4 1 res

94

95 getUpNeighbor puzx 2 @?= Nothing

96 getUpNeighbor puzy 2 @?= Just puzres

97

98 getDownNeighborTest :: Assertion

99 getDownNeighborTest = do

100 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

101 let puzx = PuzzleState 0 0 0 x

102 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

103 let puzy = PuzzleState 0 0 3 y

104 let res = fromListUnboxed (Z :. (2*2) :: DIM1) [2,1,0,3]

105 let puzres = PuzzleState 1 2 2 res

106

107 getDownNeighbor puzx 2 @?= Just puzres

108 getDownNeighbor puzy 2 @?= Nothing

109

110 getLeftNeighborTest :: Assertion

111 getLeftNeighborTest = do

Kuan-Yao Huang - Aditya Sidharta 28

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

112 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

113 let puzx = PuzzleState 0 0 0 x

114 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

115 let puzy = PuzzleState 0 0 3 y

116 let res = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,0,2]

117 let puzres = PuzzleState 1 4 2 res

118

119 getLeftNeighbor puzx 2 @?= Nothing

120 getLeftNeighbor puzy 2 @?= Just puzres

121

122

123 getRightNeighborTest :: Assertion

124 getRightNeighborTest = do

125 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

126 let puzx = PuzzleState 0 0 0 x

127 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

128 let puzy = PuzzleState 0 0 3 y

129 let res = fromListUnboxed (Z :. (2*2) :: DIM1) [1,0,2,3]

130 let puzres = PuzzleState 1 2 1 res

131

132 getRightNeighbor puzx 2 @?= Just puzres

133 getRightNeighbor puzy 2 @?= Nothing

134

135 getAllNeighborTest :: Assertion

136 getAllNeighborTest = do

137 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

138 let puzx = PuzzleState 0 0 0 x

139 let res1 = fromListUnboxed (Z :. (2*2) :: DIM1) [2,1,0,3]

140 let puzres1 = PuzzleState 1 2 2 res1

141 let res2 = fromListUnboxed (Z :. (2*2) :: DIM1) [1,0,2,3]

142 let puzres2 = PuzzleState 1 2 1 res2

143

144 getAllNeighbor puzx 2 @?= [puzres1 , puzres2]

145

146 getAllNeighborParTest :: Assertion

147 getAllNeighborParTest = do

148 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

149 let puzx = PuzzleState 0 0 0 x

150 let res1 = fromListUnboxed (Z :. (2*2) :: DIM1) [2,1,0,3]

151 let puzres1 = PuzzleState 1 2 2 res1

152 let res2 = fromListUnboxed (Z :. (2*2) :: DIM1) [1,0,2,3]

153 let puzres2 = PuzzleState 1 2 1 res2

154

155 getAllNeighborPar puzx 2 @?= [puzres1 , puzres2]

156

157 hashTest :: Assertion

158 hashTest = do

159 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

160 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

161 hash x 0 @?= 3020100

162 hash y 0 @?= 20103

163

164 getHashKeyTest :: Assertion

165 getHashKeyTest = do

Kuan-Yao Huang - Aditya Sidharta 29

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

166 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

167 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

168 getHashKey x @?= "3020100"

169 getHashKey y @?= "20103"

170

171 addMapTest :: Assertion

172 addMapTest = do

173 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

174 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

175 let z = fromListUnboxed (Z :. (2*2) :: DIM1) [1,0,3,2]

176 let puzx = PuzzleState 0 0 0 x

177 let puzy = PuzzleState 0 0 0 y

178 let puzz = PuzzleState 0 0 0 z

179 let mp = H.singleton (getHashKey x) 0

180 let resmp = H.fromList [(getHashKey x, 0), (getHashKey y, 0), (

getHashKey z, 0)]

181 addMap [puzy , puzz] mp @?= resmp

182

183 getValidNeighborTest :: Assertion

184 getValidNeighborTest = do

185 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

186 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,2,0]

187 let z = fromListUnboxed (Z :. (2*2) :: DIM1) [1,0,3,2]

188 let puzx = PuzzleState 1 0 0 x

189 let puzy = PuzzleState 1 0 0 y

190 let puzz = PuzzleState 1 0 0 z

191 let mp = H.singleton (getHashKey x) 0

192 getValidNeighbor [puzx , puzy , puzz] mp @?= [puzy , puzz]

193

194 numinvTest :: Assertion

195 numinvTest = do

196 let x = fromListUnboxed (Z :. (2*2) :: DIM1) [3,1,0,2]

197 numinv x @?= 1

198 let y = fromListUnboxed (Z :. (2*2) :: DIM1) [0,1,2,3]

199 numinv y @?= 3

200

201 solvabilityTest :: Assertion

202 solvabilityTest = do

203 let x = fromListUnboxed (Z :. (3*3) :: DIM1) [1,8,2,0,4,3,7,6,5]

204 solvability x 3 3 @?= True

205 let y = fromListUnboxed (Z :. (3*3) :: DIM1) [8,1,2,0,4,3,7,6,5]

206 solvability y 3 3 @?= False

Automatic pipelines

1 for i in 1 2 3 4 5

2 do

3 for name in "ParallelNeighbor" "ParallelPriorityQueue" "Sequential" "

ParallelPuzzle"

4 do

5 time ./app/$name input.txt +RTS -lf -N$i
6 done

7 if [! -d "eventlog/n$i/"]

8 then

Kuan-Yao Huang - Aditya Sidharta 30

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

9 mkdir "eventlog/n$i/"
10 fi

11 mv *. eventlog "eventlog/n$i/"
12 done

1 stack build

2 stack exec ghc -pkg unregister libiserv

3 stack ghc -- -threaded -rtsopts -eventlog app/Main.hs

4 stack ghc -- -threaded -rtsopts -eventlog -main -is ParallelNeighbor app/

ParallelNeighbor.hs

5 stack ghc -- -threaded -rtsopts -eventlog -main -is ParallelPriorityQueue

app/ParallelPriorityQueue.hs

6 stack ghc -- -threaded -rtsopts -eventlog -main -is ParallelPuzzle app/

ParallelPuzzle.hs

7 stack ghc -- -threaded -rtsopts -eventlog -main -is Sequential app/

Sequential.hs

yaml files

1 # This file was automatically generated by ’stack init ’

2 #

3 # Some commonly used options have been documented as comments in this file

.

4 # For advanced use and comprehensive documentation of the format , please

see:

5 # https :// docs.haskellstack.org/en/stable/yaml_configuration/

6

7 # Resolver to choose a ’specific ’ stackage snapshot or a compiler version.

8 # A snapshot resolver dictates the compiler version and the set of

packages

9 # to be used for project dependencies. For example:

10 #

11 # resolver: lts -3.5

12 # resolver: nightly -2015 -09 -21

13 # resolver: ghc -7.10.2

14 #

15 # The location of a snapshot can be provided as a file or url. Stack

assumes

16 # a snapshot provided as a file might change , whereas a url resource does

not.

17 #

18 # resolver: ./custom -snapshot.yaml

19 # resolver: https :// example.com/snapshots /2018 -01 -01. yaml

20 resolver:

21 url: https ://raw.githubusercontent.com/commercialhaskell/stackage -

snapshots/master/lts /18/17. yaml

22

23 # User packages to be built.

24 # Various formats can be used as shown in the example below.

25 #

26 # packages:

27 # - some -directory

28 # - https :// example.com/foo/bar/baz -0.0.2. tar.gz

29 # subdirs:

Kuan-Yao Huang - Aditya Sidharta 31

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

30 # - auto -update

31 # - wai

32 packages:

33 - .

34 extra -deps:

35 - PSQueue -1.1.0.1

36 - repa -3.4.1.4

37

38 # Dependency packages to be pulled from upstream that are not in the

resolver.

39 # These entries can reference officially published versions as well as

40 # forks / in-progress versions pinned to a git hash. For example:

41 #

42 # extra -deps:

43 # - acme -missiles -0.3

44 # - git: https :// github.com/commercialhaskell/stack.git

45 # commit: e7b331f14bcffb8367cd58fbfc8b40ec7642100a

46 #

47 # extra -deps: []

48

49 # Override default flag values for local packages and extra -deps

50 # flags: {}

51

52 # Extra package databases containing global packages

53 # extra -package -dbs: []

54

55 # Control whether we use the GHC we find on the path

56 # system -ghc: true

57 #

58 # Require a specific version of stack , using version ranges

59 # require -stack -version: -any # Default

60 # require -stack -version: " >=2.7"

61 #

62 # Override the architecture used by stack , especially useful on Windows

63 # arch: i386

64 # arch: x86_64

65 #

66 # Extra directories used by stack for building

67 # extra -include -dirs: [/path/to/dir]

68 # extra -lib -dirs: [/path/to/dir]

69 #

70 # Allow a newer minor version of GHC than the snapshot specifies

71 # compiler -check: newer -minor

1 name: 15 puzzle

2 version: 0.1.0.0

3 github: "alexunxus/PFP_final_project"

4 license: BSD3

5 author: "Kuan -Yao Huang , Aditya Sidharta"

6 maintainer: "aditya.sdrt@gmail.com"

7 copyright: "2021 - Kuan -Yao Huang , Aditya Sidharta"

8

9 extra -source -files:

10 - README.md

Kuan-Yao Huang - Aditya Sidharta 32

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

11 - ChangeLog.md

12

13 # Metadata used when publishing your package

14 # synopsis: Short description of your package

15 # category: Web

16

17 # To avoid duplicated efforts in documentation and dealing with the

18 # complications of embedding Haddock markup inside cabal files , it is

19 # common to point users to the README.md file.

20 description: Please see the README on GitHub at <https :// github.

com/alexunxus/PFP_final_project#readme >

21

22 dependencies:

23 - base >= 4.7 && < 5

24 - PSQueue

25 - tasty

26 - tasty -hunit

27 - random -shuffle

28 - random

29 - unordered -containers

30 - repa

31 - parallel

32

33 library:

34 source -dirs: src

35

36 executables:

37 15puzzle -exe:

38 main: Main.hs

39 source -dirs: app

40 ghc -options:

41 - -threaded

42 - -rtsopts

43 - -with -rtsopts=-N

44 - -eventlog

45 - -Wall

46 - -Werror

47 dependencies:

48 - 15 puzzle

49 - PSQueue

50 - unordered -containers

51 - repa

52 - parallel

53

54 15puzzle -generate:

55 main: GenFile.hs

56 source -dirs: app

57 ghc -options:

58 - -threaded

59 - -rtsopts

60 - -with -rtsopts=-N

61 - -eventlog

62 - -main -is GenFile

63 - -Wall

Kuan-Yao Huang - Aditya Sidharta 33

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

64 - -Werror

65 dependencies:

66 - 15 puzzle

67 - random -shuffle

68 - random

69 - parallel

70

71 sequential -exe:

72 main: Sequential.hs

73 source -dirs: app

74 ghc -options:

75 - -threaded

76 - -rtsopts

77 - -with -rtsopts=-N

78 - -eventlog

79 - -main -is Sequential

80 - -Wall

81 - -Werror

82 dependencies:

83 - 15 puzzle

84 - PSQueue

85 - unordered -containers

86 - repa

87 - parallel

88

89 parneighbor -exe:

90 main: ParallelNeighbor.hs

91 source -dirs: app

92 ghc -options:

93 - -threaded

94 - -rtsopts

95 - -with -rtsopts=-N

96 - -eventlog

97 - -main -is ParallelNeighbor

98 - -Wall

99 - -Werror

100 dependencies:

101 - 15 puzzle

102 - PSQueue

103 - unordered -containers

104 - repa

105 - parallel

106

107 parpq -exe:

108 main: ParallelPriorityQueue.hs

109 source -dirs: app

110 ghc -options:

111 - -threaded

112 - -rtsopts

113 - -with -rtsopts=-N

114 - -eventlog

115 - -main -is ParallelPriorityQueue

116 - -Wall

117 - -Werror

Kuan-Yao Huang - Aditya Sidharta 34

Parallel Functional Programming Fall 2021 Proposal #ParFifteenPuzzle

118 dependencies:

119 - 15 puzzle

120 - PSQueue

121 - unordered -containers

122 - repa

123 - parallel

124

125

126 parpuzzle -exe:

127 main: ParallelPuzzle.hs

128 source -dirs: app

129 ghc -options:

130 - -threaded

131 - -rtsopts

132 - -with -rtsopts=-N

133 - -eventlog

134 - -main -is ParallelPuzzle

135 - -Wall

136 - -Werror

137 dependencies:

138 - 15 puzzle

139 - PSQueue

140 - unordered -containers

141 - repa

142 - parallel

143

144 tests:

145 15puzzle -test:

146 main: Test.hs

147 source -dirs: test

148 ghc -options:

149 - -threaded

150 - -rtsopts

151 - -with -rtsopts=-N

152 - -Wall

153 - -Werror

154 dependencies:

155 - 15 puzzle

156 - PSQueue

157 - tasty

158 - tasty -hunit

159 - random -shuffle

160 - random

161 - unordered -containers

162 - repa

163 - parallel

Kuan-Yao Huang - Aditya Sidharta 35

