
PFP Final Project - NQueens
Qiao Huang

December 22, 2021

Abstract

NQueens is a classic problem whose solutions grow exponentially with the input size. In this
project, I implement the traditional backtracking DFS algorithm with pruning and parallelize it
with the Eval monad. The results show that my parallelization strategy works well and around
6x speedup is achieved under the 8-way parallelization experiments. Some observations are
discussed in the last section.

1 Introduction
NQueens is a well-known problem, that is, how many different ways can we place n queens on an
n × n chessboard such that they can’t attack each other. As we can see in figure 1, there are 2
solutions when n = 4. This project only interested in the number of solutions, and is not intended
to output the detailed placement plan.

Q

Q

Q

Q

Q

Q

Q

Q

Figure 1: 2 solutions when n = 4

2 Methods
2.1 Sequential algorithm
A classic backtracking DFS algorithm with pruning is applied.

2.1.1 Board representation

The chessboard status is represented by a zero-one matrix, where value one means we can’t place
a queen on this square. If we search the solution in order such that the k-th queen we placed is on
the k-th row of the board, then the top k rows are guaranteed to be filled with queens, so we only
need to track the status of the bottom n − k rows (Figure 2). To speed up the computation, this

1

matrix is represented as a list of Word in the Haskell program, each matrix entry corresponds to a
bit.

[0000,

 0000,

 0000,

 0000]

Q

[1100,

 1010,

 1001]

Figure 2: Represent board as a 0-1 matrix. Red squares mean that we can’t place a queen there.
When the board is empty, we can place a queen on any square, so it corresponds to an all-zero 4*4
matrix. If we have placed a queen in the first square, the first row of the matrix is discarded, so
the representation becomes a 3*4 matrix.

2.1.2 DFS step

On the k-th step I try to place a queen on the k-th row. Since only the bottom part of the board
is tracked, the k-th row is corresponding to the first row of our representation matrix, i.e. the first
Word in the list.

Let row be the first element and rows be the remaining list. On any value 0 position in row
we can place the k-th queen here, and then the board is updated accordingly (Figure 3). Firstly a
free column in row is chosen to place this queen, then I compute the influence of this queen over
rows and update it. As we can see in figure 4, there are only n different patterns of influence when
placing a queen, so it’s pre-computed and stored in a map to speed up the search.

2.1.3 Pruning

Two pruning strategies are used during the DFS. For example, in the case shown in figure 5, there
are two more queens to be placed on the chessboard, but firstly, the third row is fully occupied, and
secondly, there is only one possible column to place a queen, and other columns are fully occupied,
so we shouldn’t continue searching.

2.2 Parallelization
The Eval monad is used to implement parallel computation. Similar to the Fibonacci example in
the class, I run parallel to a certain depth to balance between spark overhead and load balancing.
When all queens are placed, i.e. the board status is an empty list, the answer is 1; Otherwise,
search the following rows and sum the results up. After the first few queens are placed, I just
use r0 and don’t spark threads anymore; Otherwise, I apply parList rseq strategy to distribute
workloads. For the detailed implementation, please refer to the appendix.

3 Experiments
The first experiment aims to find the best parallelization depth, and the results are summerized in
table 1. Load balancing is almost perfect when the depth is greater than two as the speed up is

2

[0000,

 0000,

 0000,

 0000]

Q

[1100,

 1010,

 1001]

choose column 1

[0000,

 0000,

 0000]

drop the first
row

compute the
influence on the
following rows

[1100,

 1010,

 1001]

zipWith "bitwise or"

Q

choose column 3

[1010,

 1001]

drop the first
row

compute the
influence on the
following rows

[0111,

 1010,

 0010]

zipWith "bitwise or"

Q

Q

Q

[1100,

 1010,

 1001]

[1111,

 1011]

Q

Q

Figure 3: On the left and right are two DFS steps. The remaining board and the influence on it
doesn’t nessecarily have the same length. zipWith will automatically align them and compute the
correct next board states.

Q

[1100,

 1010,

 1001]

Q

[1110,

 0101,

 0100]

Q

[0111,

 1010,

 0010]

Q

[1110,

 0101,

 0100]

Figure 4: 4 different influence patterns when n = 4

[1111,

 1011]

Q

Q

Figure 5: A example pruning case

3

very close to 8, and parallel overhead grows steadily along with depth. So I choose depth equal to
3 in the following experiments.

Depth Sparks Time (s) Speedup
total converted GC’ed fizzled total elapsed

1 15 14 0 1 40.718 5.592 7.281474
2 197 41 0 156 41.177 5.232 7.870222
3 1972 603 9 1360 42.276 5.302 7.973595
4 15989 584 36 15369 42.284 5.302 7.975104
5 105508 1168 3046 101294 43.182 5.412 7.978936
6 570734 4020 338888 227826 44.347 5.562 7.973211
7 2485313 6393 2124954 353966 44.656 5.603 7.970016
8 8307226 3544 7836934 466748 43.726 5.482 7.976286
9 20703677 4649 20056548 642480 45.030 5.642 7.981212
10 36301682 4988 35528726 767968 46.260 5.802 7.973113
11 47505513 3145 46741416 760952 47.085 5.902 7.977804
12 54862349 10462 53425107 1426780 49.586 6.212 7.982292
13 56392867 4596 55492976 895295 48.531 6.082 7.979448
14 58611134 2157 57868722 740255 48.646 6.092 7.985227
15 60931926 3550 60078427 849949 49.793 6.242 7.977091

Table 1: Parallelization overhead and running time with n = 15 and 8 cores

Figure 6 shows the running time when n = 15 under different numbers of cores. The speedup
is satisfactory as the actual running time is very close to ideal.

Threadscope analysis is performed and the results are in figure 7. As you can see, about 7 cores
are kept busy, and the workload is perfectly balanced. The wasted computation is mainly garbage
collection.

4 Discussion
There are several observations during my development. First, I noticed that DFS is significantly
faster than BFS, I believe it’s because a lot more live data is kept during the BFS, which causes
slower garbage collection. Second, by eliminating repeated computations, that is to pre-compute n
different influence patterns and simply fetch them during DFS, I can achieve 20 percent speedup
on top of the 8-way parallelization. Finally, there is around 100 gigabytes heap allocation in total,
resulting in significant garbage collection overhead, maybe there are some further optimization
opportunities around that.

4

1 2 3 4 5 6 7 8
Threads

0

5

10

15

20

25

30

Ti
m

e
(s

)

Figure 6: Running time with different numbers of cores. The red line is the ideal running time,
and the blue dots are the actual times.

Figure 7: Threadscope analysis when n = 15 with 8 cores

5

Appendices

type Board = [Word]

nQueens :: Int -> Int -> Int
nQueens n dep = count $ replicate n 0

where
mask = (bit n) - 1 :: Word

occupyBoard = Map.fromAscList [(x, occupy bitx bitx bitx)
| x <- [0..n-1], let bitx = bit x]

where
occupy c l r = (c .|. l' .|. r') : occupy c l' r'

where l' = shiftL l 1
r' = shiftR r 1

count [] = 1
count (row:rows) = sum (nums `using` strat)

where
nums = map count $ filter feasible boards
strat

| n - dep > length rows = r0
| otherwise = parList rseq

boards = map placeQueenAt $ filter (not . testBit row) [0..n-1]
feasible b = rowsFeasible && columnsFeasible

where
rowsFeasible = notElem mask $ map (.&. mask) b
columnsFeasible = n >= length b + (popCount $ foldr (.&.) mask b)

placeQueenAt x = zipWith (.|.) rows $ occupyBoard Map.! x

Source Code 1: My Haskell code, where count is the DFS function returning the total number of
ways to place queens on the given chessboard, boards are a list of board status after placing an
additional queen, and feasible is the pruning function.

6

