COMS4995 Final Project: Al Gomoku Player in Haskell

Yunkai Zhu; UNI: yz4129

1 Introduction

Gomoku, also called Five in a Row, is an abstract strategy board game. It is usually played by two
players, represented by the white and black Go stones, on a Go board. Players can place stones of
their color on empty intersections on the board, represented by (row,column). When a player have
placed an unbroken chain of 5 stones, the game stops and that player wins.

2 Project Set-up

In this project, the game board is represented by a 9x9 matrix of integers, where 0 represents empty
space, 1 and -1 represent different players. Two Al players are built: the first one is implemented using
the MinMax algorithm with alpha-beta pruning; the second one also utilizes the MinMax algorithm,
but is implemented in a parallel method.

3 Al Player

3.1 interface

The AI player takes in a board ([[int]]) and a side (int) and returns the best move ((int,int)).

3.2 Basic Idea

The AI player implements the MinMax search algorithm. The idea is to assume both players uses
the same strategy to play the game, which is to make the move that gives the best outcome. We use
recursion to create a tree structure. Alternating levels of the tree represents alternating turns between
both players. We populate the tree bottom-up. At each level, the player chooses the move with the
best outcome.

The outcome is decided using heuristics, which is implemented in the scoreBoard function. Since the
heuristics is not the focus of this project, I have randomly chosen one that makes some sense.

3.3 Alpha-beta pruning

What usually comes together with the MinMax search is Alpha-beta pruning. The idea is that when
certain conditions are satisfied, we can ignore certain subtrees. However, I think to implement this
algorithm, our MinMax search has to be in serial (i.e. search each children of a node in sequence).
Therefore, I did not implement this algorithm in this project.

4 Performances

This section shows the performances of both Al player on the same scenario: make a move based on
the current board. The AI player with alpha-beta pruning is able to make a prediciton within 0.766

seconds for depth 3 and 6.932 seconds for depth 4. The runtime of the parallel Al is shown in Table 1.
The results show that the parallel implementation is able to speed up the process significantly: when

Table 1: Performances of two Al players (averaged on 10 runs)
1 core 4 cores 8 cores
Parallel AT depth 3 2.039 0.807 0.646
Parallel AT depth 4 82.46 30.808 24.684

running in 4 cores, the run time is less than half of the run time in 1 core. However, the run time of
the alpha-beta pruning Al is significantly better than this parallel implement.

References

https://www.andrew.cmu.edu/user/rbearlso/proposal,.bcarlso.html

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.5904rep=rep1ltype=pdf

Main.hs 12/22/21, 6:17 PM

module Main where
import Control.Parallel.Strategies

main :: I0()
main = print(r)

{-
Make a move on the board
Input: board, tar_cor, side
Return: board

-}

makeAMove :: [[Int]l] —> (Int,Int) —> Int —> [[Int]]
makeAMove board tar_cor side = makeAMoveHelper board tar_cor 0 side

makeAMoveHelper :: [[Int]] —> (Int, Int) —> Int —> Int —> [[Int]]
makeAMoveHelper (x:xs) (tar_x, tar_y) curr_x side

| tar_x == curr_x = (makeAMoveRow x tar_y side) : xs

| otherwise = x:(makeAMoveHelper xs (tar_x, tar_y) (curr_x+1) side)

makeAMoveRow :: [Int] -> Int -> Int —> [Int]
makeAMoveRow row index side = makeAMoveRowHelper row index 0 side

makeAMoveRowHelper :: [Int] —> Int -> Int —-> Int —> [Int]
makeAMoveRowHelper (x:xs) tar_index curr_index side

| tar_index == curr_index = side : xs

| otherwise = x:(makeAMoveRowHelper xs tar_index (curr_index+1) side)

{-
Score a board for one board
Input: board
Return: score (int)

-}

scoreBoard :: [[Int]] —> Int

scoreBoard board = (scoreBoardOneSide board 1) - (scoreBoardOneSide board
(-1))

scoreBoardOneSide :: [[Int]] -> Int —> Int
scoreBoardOneSide board side = (scoreBoardOneDirection board side) +
(scoreBoardOneDirection (flipBoard board) side)

scoreOneRow :: [Int] —> Int —> Int
scoreOneRow row side = scoreOneRowHelper row side 0

http://localhost:4649/?mode=haskell Page 1 of 4

Main.hs 12/22/21, 6:17 PM

scoreHelper :: Int —> Int
scoreHelper num = case num of
2 — 100
3 -> 200
4 —> 10000
_—>0
scoreOneRowHelper :: [Int] —> Int —> Int —> Int

scoreOneRowHelper [] side num = scoreHelper num
scoreOneRowHelper row@(x:xs) side num
| x == side = scoreOneRowHelper xs side (num + 1)
| otherwise = (scoreHelper num) + (scoreOneRowHelper xs side 0)

scoreBoardOneDirection :: [[Int]] —-> Int —> Int
scoreBoardOneDirection board side = sum [scoreOneRow row side | row <- board]

flipBoard :: [[Int]] —> [[Int]]
flipBoard matrix
| null matrix = [[] | _ <= [1 .. 9]]
| otherwise = let (x:xs) = matrix in
[a:b | (a,b) <- (zip x (flipBoard xs))]

{-
Get all possible moves on the board
Input: board
Return: moves [(int,int)]

-}

getAllWMoves :: [[Int]] —> [(Int, Int)]
getAllMoves board = getAllMovesHelper board 0

getAllWMovesHelper :: [[Int]] —> Int —> [(Int, Int)]
getAlWMovesHelper board row_index
| null board = []
| otherwise = let (x:xs) = board in
(getAllMovesOneRow x row_index) ++ (getAllWovesHelper xs (row_index +
1))

getAllWMovesOneRow :: [Int] —> Int —> [(Int, Int)]
getAllMovesOneRow row row_index = getAllMovesOneRowHelper row row_index 0

getAllMovesOneRowHelper :: [Int] -> Int —> Int —> [(Int, Int)]
getAllMovesOneRowHelper row row_index curr_index
| null row = []
| otherwise = let (x:xs) = row in
do
if x ==
then (row_index, curr_index):(getAllMovesOneRowHelper xs

http://localhost:4649/?mode=haskell Page 2 of 4

Main.hs 12/22/21, 6:17 PM
row_index (curr_index + 1))
else getAllMovesOneRowHelper xs row_index (curr_index + 1)
{-
-}

AI functions

initializeBestScore :: Int —> Int
initializeBestScore side

| side == -100000

| otherwise = 100000

switchSide :: Int —> Int
switchSide side = -side

chooseBetterScore :: Int —-> (Int,(Int, Int)) —> (Int,(Int, Int)) -> (Int,
(Int, Int))
chooseBetterScore side (scorel, movel) (score2, move2) =
do
if (side == 1 && scorel > score2) || (side == -1 && scorel < score2)
then (scorel, movel)
else
(score2, move2)

getBestMoveHelper :: [[Int]] —> Int —> Int —> Int -> (Int, Int) —> (Int,(Int,
Int))
getBestMoveHelper board side depth curr_depth move

| curr_depth == depth = (scoreBoard board, move)

| otherwise = chooseBestMove allResults side

where possibleMoves = getAllMoves board

allResults = parMap rdeepseq (parallelHelper side board depth

curr_depth) possibleMoves

chooseBestMove :: [(Int,(Int, Int))] —> Int —> (Int,(Int, Int))
chooseBestMove [] side | side == 1 = (-100000, (10000,10000))
| otherwise = (100000, (10000,10000))
chooseBestMove results@(x:xs) side = chooseBetterScore side nextR x
where nextR = chooseBestMove xs side

parallelHelper :: Int —> [[Int]] -> Int —> Int -> (Int,Int) —> (Int, (Int,
Int))
parallelHelper side board depth curr_depth move = getBestMoveHelper
movedBoard (switchSide side) depth (curr_depth + 1) move

where movedBoard = makeAMove
board move side

getBestMove :: [[Int]] —> Int —> Int —> (Int, Int)
getBestMove board side depth = snd (getBestMoveHelper board (switchSide side)

http://localhost:4649/?mode=haskell Page 3 of 4

12/22/21, 6:17 PM

Main.hs

depth 0 (10000, 10000))

testing ——

e B e W BN W W B |

""""""

"""""

IIIIIIIII

”””””

llllllll

lllllllll

et b bt b b bed b bd b

r = getBestMove boardl 1 3

Page 4 of 4

haskell

http://localhost:4649/?mode

Al-serial.hs 12/22/21, 6:16 PM

main :: I0()
main = print (r)
{-

Make a move on the board
Input: board, tar_cor, side
Return: board

-}

makeAMove board tar_cor side = makeAMoveHelper board tar_cor 0 side

makeAMoveHelper (x:xs) (tar_x, tar_y) curr_x side
| tar_x == curr_x = (makeAMoveRow x tar_y side) : xs
| otherwise = x:(makeAMoveHelper xs (tar_x, tar_y) (curr_x+1) side)

makeAMoveRow row index side = makeAMoveRowHelper row index 0 side
makeAMoveRowHelper (x:xs) tar_index curr_index side

| tar_index == curr_index = side : Xxs
| otherwise = x:(makeAMoveRowHelper xs tar_index (curr_index+1) side)

{-
Score a board for one board
Input: board
Return: score (int)

-}

scoreBoard board = (scoreBoardOneSide board 1) - (scoreBoardOneSide board

(-1))

scoreBoardOneSide board side = (scoreBoardOneDirection board side) +
(scoreBoardOneDirection (flipBoard board) side)

scoreOneRow row side = scoreOneRowHelper row side 0

scoreHelper num = case num of

2 —> 100

3 —> 200

4 —> 1000
_>@

scoreOneRowHelper row side num
| null row = scoreHelper num
| otherwise = let (x:xs) = row in
do
if x == side
then scoreOneRowHelper xs side (num + 1)
else (scoreHelper num) + (scoreOneRowHelper xs side 0)

http://localhost:4649/?mode=haskell Page 1 of 4

Al-serial.hs 12/22/21, 6:16 PM

scoreBoardOneDirection board side = sum [scoreOneRow row side | row <- board]

flipBoard matrix
| null matrix = [[] | _ <= [1 .. 9]]
| otherwise = let (x:xs) = matrix in
[a:b | (a,b) <- (zip x (flipBoard xs))]

{-
Get all possible moves on the board
Input: board
Return: moves [(int,int)]

-}

getAlWoves board = getAllMovesHelper board 0

getAlWovesHelper board row_index
| null board = []
| otherwise = let (x:xs) = board in
(getAllMovesOneRow x row_index) ++ (getAllMovesHelper xs (row_index +
1))

getAllMovesOneRow row row_index = getAllMovesOneRowHelper row row_index 0

getAllMovesOneRowHelper row row_index curr_index
| null row = []
| otherwise = let (x:xs) = row in
do
if x ==
then (row_index, curr_index):(getAllWMovesOneRowHelper xs
row_index (curr_index + 1))
else getAllMovesOneRowHelper xs row_index (curr_index + 1)

{-
-}

AI functions

initializeBestScore side
| side == 1 = -100000
| otherwise = 100000
initializeAlphaBeta side = -1 x (initializeBestScore side)

switchSide side
| side ==
| otherwise

-1
1

chooseBetterScore side (scorel, movel) (score2, move2) =
do
if (side == 1 && scorel > score2) || (side == -1 && scorel < score2)

http://localhost:4649/?mode=haskell Page 2 of 4

Al-serial.hs

http://localhost:4649/?mode=haskell

then (scorel, movel)
else
(score2, move2)

goThroughMovesHelper moves bestScore bestMove side board depth curr_depth
alpha_beta
| length moves == 0 = (bestScore, bestMove)
| otherwise = let (x:xs) = moves in
let movedBoard = makeAMove board x side in
let (newBestScore, newBestMove) = getBestMoveHelper
movedBoard (switchSide side) depth (curr_depth + 1) bestScore in

do
if (side == 1 && newBestScore > alpha_beta)
|| (side == -1 && newBestScore < alpha_beta)
then (newBestScore, Xx)
else

let (bestScore_, bestMove) =
chooseBetterScore side (bestScore, bestMove) (newBestScore, x) in
goThroughMovesHelper xs bestScore_
bestMove_ side board depth curr_depth alpha_beta

getBestMoveHelper board side depth curr_depth alpha_beta
| curr_depth == depth = ((scoreBoard board), (-1,-1))
| otherwise =
let bestScore = initializeBestScore side in

let bestMove = (-1,-1) in

let possibleMoves = getAlWMoves board in
goThroughMovesHelper possibleMoves bestScore bestMove
side board depth curr_depth alpha_beta

getBestMove board side depth =
let alpha_beta = initializeAlphaBeta side in
let (_, bestMove) = getBestMoveHelper board side depth @ alpha_beta
in
bestMove

boardEmp

=== test lng —_ = ==== ===

- - 0w

S SsSSosss<
Ssssssssa |
[SIS RIS R RO IO RO
SO0 ®
OO0 ®
RS
RS S
P

]

12/22/21, 6:16 PM

Page 3 of 4

12/22/21, 6:16 PM

Al-serial.hs

boardl =

p— p— p— p— -~ r—r— — —
""""""
llllllll

IIIIIIII

A A A A A A A A a
Lo BISSINCS IS IS R G RGNS Yo

lllllllll

e b bt b b bed b bd e

llllllll

L e e N el e B B B |

""""""

"""""

IIIIIIII

lllllllll

llllllll

IIIIIIII

lllllllll

et b bt b b bd b bd b

llllllll

Lo N e N e Mo B o o B |

""""""

"""""

IIIIIIIII

lllllllll

’’’’’’’’’

IIIIIIIII

lllllllll

e bd b b] b b bd

mM
—
o
= ~
—
©T T
| G
© @©
o O
0 O
(O]
> >
o O
= =
P
n n
U QO
o m
+
(O]
(o) @)
11l
O

Page 4 of 4

haskell

http://localhost:4649/?mode

	Introduction
	Project Set-up
	AI Player
	interface
	Basic Idea
	Alpha-beta pruning

	Performances

