
Parallel Functional Programming Project Final

Report: Genetic Algorithms (GenAlgo)

Jake Fisher (jf3148) & Pedro Santos (pb2751)

December 2021

1 Background

Genetic algorithms are a class of algorithms designed for solving search prob-
lems. Their key technique is generating a population of many potential solu-
tions, evaluating them, and then choosing the next generation from a “crossover”
of the best solutions of the previous generation. For many search problems, there
are often many local minima that typical optimization algorithms can get stuck
in, so an algorithm that introduces randomness can be useful for finding a global
optimum. This is also a useful class of algorithms as it can find approximate
solutions to NP-problems in reasonable amounts of time.

Genetic algorithms can be useful in solving constraint satisfaction problem
as well because these can often have a straightforward representation and cal-
culation of how good a solution is. This can be judged based on the number of
constraints satisfied/broken.

Some example problems that can be solved efficiently with genetic algorithms
are N -Queens, hyper-parameter optimization, code-breaking, and the traveling
salesman problem.

2 Algorithm Structure

Our project provides a general-use genetic algorithm solver that takes in a ge-
netic algorithm “problem” (such as N -Queens), and the parameters for that
given problem (such as the number, N , of queens), and solves it using a ge-
netic algorithm solver. Note that the problems would be provided in a separate
user-defined module to be imported from the main function solver.

A genetic algorithm problem is defined as an instance of the GAData class,
which is the following.

class GAData a where

dataRange :: a -> (Int, Int)

repLength :: a -> Int

fitness :: a -> [Int] -> Int

1



maxFitness :: a -> Int

showSol :: a -> [Int] -> [Char]

dataRange and repLength are functions for determining the numeric range
of the items in each chromosome and the length of a given chromosome, re-
spectively. fitness and maxFitness are, respectively, the function on a given
chromosome that evaluates its “quality” (and thus likelihood to move on to the
next generation), and the highest possible fitness score a chromosome could get,
which is both used for early termination (e.g., in a CSP where all constraints are
satisfied) and as a denominator when determining the likelihood that a given
chromosome will move on to the next generation. showSol is simply a pretty
printing function (e.g., printing an N -Queens solution as an N×N chess board.

For this stage of the project, we implemented GAData instances of the N -
Queens problem, and the Traveling Salesman Problem.

In the main module, we first parse the arguments provided which would
include in the following order: number of iterations/generations to run over,
the population size, the percentage of mutation, the name of the problem, the
problem arguments (e.g., number of queens for the N -Queens problem).

We then loop over the number of iterations required and return the best
solution from the most recent iteration. If at any point however we reach the
optimal solution, we would just return that solution instead.

3 Sequential Implementation

We based our sequential implementation on a Python implementation specifi-
cally designed for solving N -Queens with a genetic algorithm [2], adapting it
both for Haskell and generalizing it for all genetic algorithm problems

Our sequential implementation consists of the the following steps:

1. Population initialization

2. Fitness calculation

3. Population sorting

4. Crossover

5. Mutation

3.1 Population Initialization

This step is only run a single time, as opposed to all others, which are run in a
loop. It has the following type signature (to initialize the full population:

initialize :: GAData a => a -> [Int] -> Int -> ([[Int]], [Int])

2



The second parameter is the list of random numbers generation by the main
genetic algorithm function, which is an infinite list. Because doing all of our
work in monad-space would have made for a very difficult parallelization task,
we generate random numbers by intially generating two infinite lists of random
numbers, one of floats between 0 and 1, to be use for calculating odds for
crossover and mutation, and one of integer in the dataRange of the GAData

problem, used for new values both in initialization and in mutation. Because
we always know exactly how many values from the infinite list we will need for
any given step, we can efficiently split up the list later to portion out to different
chromosomes.

3.2 Fitness Calculation

This is the first step in the genetic algorithm loop; in our sequential implemen-
tation, it simply consists of running map (\x -> (fitness d x, x)) over the
population, creating a new list of fitness-chromosome tuples.

3.3 Population sorting

In our sequential implementation, we simply use the Standard Prelude’s sortOn
function, with negate . fst as the key function (in order to sort by fitness,
in descending order). If the top solution has the maximum fitness, we can stop
the loop and return that solution.

3.4 Crossover

In order to ensure that fitter chromosomes are more represented in the next
generation, we pick 2N (where N is the population size) chromosomes randomly
from the previous population, where the probability of picking a chromosome c
is proportional to

f(c)

max f

Where f and max f are the fitness and maxFitness functions defined for the
given GAData problem. We then section the 2N chromosomes into pairs, and
run the crossover function on them, which has the following type signature:

crossover :: GAData a => a -> ([Int], [Int]) -> [Int]

There are a number of potential crossover functions one can use in a genetic
algorithm; we used a Uniform Crossover, where the “child” chromosome consists
of the first half of the first half of one parent chromosome, and the second half
of the other parent chromosome.

3.5 Mutation

The type signature for the mutation is the following:

3



mutate :: GAData a => a -> Float -> [Float] -> [Int] -> [Int] ->

[Int]↪→

We take in a mutation threshold, a list of random odds, the original values, and
randomly generated new values, replacing a given value only if the odds for that
location are above the threshold.

4 Parallel Implementation

Given that we now have an infinite list of random numbers that is split apart,
we can evaluate our expensive fitness, crossover and mutate maps in parallel.
For this we used the following structure:

import Control.Parallel.Strategies(parMap, rdeepseq)

-- ...

parMap rdeepseq f population

Where f represents the function that takes an element of the population, applies
our fitness, crossover or mutate function and returns the modified result.

We used parMap as each element of the list could be evaluated in parallel
when carrying out the map. Initially, we tried several combinations of parList
and one of rpar, rseq but found that this would not do any useful work as
between our key parallel functions, we needed sequential work to be done. If the
parallel steps did not fully evaluate their elements, then this burden would have
to be taken on by the sequential portion of our algorithm AND we would have
more overhead due to spark creation. For this step we did not use parBuffer

as the outstanding sparks created would all be consumed almost immediately
and so more would have to be generated for other list members.

With this change we found that we had almost 100% spark conversion rate.
Seeing that an individual mutation was a good candidate for parallelization,

as whether or not an index will be mutated is independent of the other indices,
we tested an initial parallelization of that step. However, we found that it slowed
down the algorithm and resulted in many fizzled sparks. We surmised that this
was because a given mutation was already in a parallelized operation, so with a
non-trivial population size, any cores would already be busy at that point. We
thus concluded that any parallelization of other lower-level steps would not be
useful, and in fact would likely be harmful.

The next change that we implemented was a parallel depth-limited sort.
We found that out of the sequential portion of our algorithm, sorting was an
expensive operation so we sought to improve it. While in Marlow’s book he
provides an attempt at parallelizing Quicksort, we attempted one of Merge
Sort for simplicity. We found that a good way to parallelize it was with an
implementation similar to that of Fibonacci generation seen in the class slides.
This step yielded yet more speedup.

The Merge Sort code was as follows:

4



merge :: [(Int, [Int])] -> [(Int, [Int])] -> [(Int, [Int])]

merge l [] = l

merge [] l = l

merge l1@(x1@(f1, _):t1) l2@(x2@(f2, _):t2)

| f1 > f2 = x1: merge t1 l2

| otherwise = x2: merge l1 t2

-- depth limited sorting

parMergeSort :: Int -> [(Int, [Int])] -> [(Int, [Int])]

parMergeSort _ [] = []

parMergeSort _ l@[_] = l

parMergeSort d l

| d == 0 = sortOn (negate . fst) l

| otherwise = mergedFirst `par` mergedSecond `pseq` merge

mergedFirst mergedSecond↪→

where

mergedFirst = parMergeSort (d-1) first

mergedSecond = parMergeSort (d-1) second

(first, second) = splitAt halfway l

(halfway, _) = quotRem (length l) 2

Though there was fizzling, we tuned the depth limit to reduce this. We
found that for the computer we were running our code on, a depth limit of 7
was a good compromise to reduce fizzling while maintaining performance.

However, we found that if we increased the population size up to 10000 or
the equivalent size increase in representations, we would begin to get a large
number of sparks overflowing. This was likely due to parMap, like parList,
generating all the sparks for a list at the beginning. This led us to thin chunks
of our population before each parallelism step.

One issue we noticed with particularly large population sizes (> 5, 000) was
spark overflowing, which would be expected. A possible solution we have seen
for this type of problem is through chunking, but our problem does not suit itself
especially well to that strategy, as there are steps that rely on cross-chromosome
interaction, such as sorting and crossover, meaning that we would have to de-
chunk and re-chunk multiple times in each iteration. So, while we did not
implement chunking at this stage, it is still a worthwhile avenue to consider for
this type of problem, though the repeated chunking problem would need to be
ameliorated in some fashion.

5 Results

To run the code and reproduce results, first clone from GitHub and go to the
project directory. Then the commands to run would be stack build followed
by time stack run -- <program-args> [+RTS <RTS-args>]. Note that the
largest number of cores for one of our computers was 4 hence that will be the
limit for our tables and graphs.

5



5.1 ThreadScope Results

The event log of our initial attempt, using rSeq, on two cores:

On 4 cores:

As we can see, the load balancing is very poor, as rSeq isn’t actuallu evaluating
any sizable portion of the work, which then means that the primary core needs
to pick up the remainder. We remedy this by using rdeepseq instead:

Now, we can see far improved load balancing (note the smaller gaps on the
non-primary cores).

The following is a zoomed-in portion of the sorting section our ThreadScope

6



log with no maximum depth on sorts:

With a maximum depth of 7 (note the differing timescale from the previous
log):

5.2 Timing Results

Here are presented run times and speedups for N -Queens and TSP respectively
with corresponding line graphs against ideal speedup with differing population
sizes and representation lengths.

Note that despite diminishing returns, as the number of cores went up, the
number of sparks GCed and fizzled began to decrease.

The parameters for the following NQueens experiments were for 10 itera-
tions, varying population size, 0.1 mutation percentage and 128 queens.

Here the population was fixed at 1000. Parameters other than the number
of queens are the same as in the previous problem.

The following represent the first experiment for TSP over 20 iterations with
100 cities:

6 Conclusion

We find that we are able to efficiently parallelize the Genetic Algorithms prob-
lem, getting significant speedups, though we note that the Genetic Algorithms
problem is not without its issues in parallelization. We could explore further
work on reducing overflow without introducing expensive recurrent chunking/de-
chunking steps at each iteration, and expanding to other Genetic Algorithms
applications.

7



Population Cores Time Speedup
500 1 9.301 1
500 2 5.220 1.78
500 3 4.123 2.26
500 4 3.766 2.47
1000 1 20.556 1
1000 2 11.106 1.85
1000 3 9.133 2.25
1000 4 7.735 2.66
2000 1 41.014 1
2000 2 25.261 1.62
2000 3 19.622 2.09
2000 4 17.509 2.34

Table 1: NQueens popsize [500, 1000, 2000]

Num Queens Cores Time Speedup
64 1 5.238 1
64 2 3.036 1.73
64 3 2.507 2.09
64 4 2.347 2.23
128 1 20.556 1
128 2 11.106 1.85
128 3 9.133 2.25
128 4 7.735 2.66
256 1 79.35 1
256 2 45.370 1.75
256 3 38.142 2.08
256 4 28.613 2.77

Table 2: NQueens popsize [500, 1000, 2000]

Another avenue we could look at would be maintaining several different
random generators, rather than having two infinite lists we split off and divide
up for each chromosome.

Some other limitations include the fact that while we try to generalize, this
means that it is possible that we lose some potential speedups as the represen-
tation length (not population size) gets larger. For very large representation
lengths it would be important to parallelize at a lower level (within the mutate
function itself, for example), though these very large representation lengths
would also likely require large population sizes for good results.

Also trying to generalize means that we may be missing more optimal func-
tions for different sorts of problems. However, this would require more onus put
on another user/developer to write their own functions e.g.: crossover and we
preferred to explore a simpler modular approach.

8



PopSize Cores Time Speedup
1000 1 3.095 1
1000 2 2.115 1.46
1000 3 1.956 1.58
1000 4 1.972 1.57
2000 1 5.881 1
2000 2 3.974 1.48
2000 3 3.488 1.68
2000 4 3.479 1.69
5000 1 16.108 1
5000 2 10.897 1.48
5000 3 9.714 1.66
5000 4 9.989 1.61

Table 3: TSP popsize [1000, 2000, 5000]

A Code Listing

A.1 Main Module

1 module Main where

2

3

4 import System.Environment(getArgs, getProgName)

5 import System.Exit(exitFailure, exitSuccess)

6 import Data.List(sortOn)

7 import Data.List.Grouping(splitEvery)

8 import System.Random(getStdGen, randomRs)

9 import Control.Monad(when)

10 import Control.Parallel(par, pseq)

11 import Control.Parallel.Strategies(using, parList, rdeepseq)

12 import qualified Data.Map as M

13

14 import GA

15 import NQueens

16 import TSP

17

18 main :: IO ()

19 main = do

20 args <- getArgs

21 case args of

22 iters:popSize:mutationPct:pArgs -> do

23 -- do some argparsing here

24 when (read popSize <= (0::Integer)) (do

25 putStrLn "Population size must be larger than 0."

9



26 exitFailure)

27

28 case pArgs of

29 ["nqueens", n] -> do

30 let d = NQueens $ read n

31 geneticAlgorithm d (read iters) (read popSize) (read

mutationPct)↪→

32 ["tsp", n'] -> do

33 let n = read n'

34 cm = M.fromList [(i, M.fromList [(j, i+j+1) | j <-

[0..(n-1)]])| i <- [0..(n-1)]]↪→

35 d = TSP n cm

36 geneticAlgorithm d (read iters) (read popSize) (read

mutationPct)↪→

37 _ -> do

38 putStrLn "Unimplemented problem-string or poorly

written problem-args"↪→

39 exitFailure

40

41 _ -> do

42 prog <- getProgName

43 putStrLn $ "Usage: "++prog++" <num-iter> <pop-size>

<mutation-pct> <problem-string> ...<problem-args>"↪→

44 exitFailure

45

46

47 merge :: [(Int, [Int])] -> [(Int, [Int])] -> [(Int, [Int])]

48 merge l [] = l

49 merge [] l = l

50 merge l1@(x1@(f1, _):t1) l2@(x2@(f2, _):t2)

51 | f1 > f2 = x1: merge t1 l2

52 | otherwise = x2: merge l1 t2

53

54 -- depth limited sorting

55 parMergeSort :: Int -> [(Int, [Int])] -> [(Int, [Int])]

56 parMergeSort _ [] = []

57 parMergeSort _ l@[_] = l

58 parMergeSort d l

59 | d == 0 = sortOn (negate . fst) l

60 | otherwise = mergedFirst `par` mergedSecond `pseq` merge

mergedFirst mergedSecond↪→

61 where

62 mergedFirst = parMergeSort (d-1) first

63 mergedSecond = parMergeSort (d-1) second

64 (first, second) = splitAt halfway l

65 (halfway, _) = quotRem (length l) 2

10



66

67

68 geneticAlgorithm :: GAData a => a -> Int -> Int -> Float -> IO ()

69 geneticAlgorithm d iters popSize mutationPct = do

70 g <- getStdGen

71 let randOdds = randomRs (0.0 :: Float, 1.0) g

72 randVals = randomRs (dataRange d) g

73 (initialPop, newRandomVals) = initialize d randVals popSize

74

75 -- we want to loop with this initial population until done

76 gaLoop initialPop randOdds newRandomVals iters

77 where

78 gaLoop pop rs rvs curIters = do

79

80 -- 1) Get the fitness of whole population in order.

DeepSeq for nonsequential eval↪→

81 let fitPop = map (\x -> (fitness d x, x)) pop `using`

parList rdeepseq↪→

82 sortedFitPop = parMergeSort 7 fitPop -- this

could be a parameter, but limited by our

machines' cores

↪→

↪→

83 (topFitness, topSolution):_ = sortedFitPop

84

85 -- Exit if optimal

86 when (topFitness == maxFitness d) (do

87 putStrLn $ "Optimal solution found:\n" ++ showSol

d topSolution↪→

88 exitSuccess)

89

90 -- 2) Get the proportional probabilities for each

chromosome↪→

91 let probs = map (\(f, _) -> (fromIntegral f :: Float)

/ fromIntegral (maxFitness d)) sortedFitPop↪→

92 totalProb = sum probs

93

94 -- 3) take the number of probabilities needed to

select elements for crossover↪→

95 (crossRs, rs1) = splitAt (length pop * 2) rs

96 -- this is probably a bottleneck

97 pairList = map (\r -> pickrandom (r*totalProb)

sortedFitPop probs 0) crossRs↪→

98 pairs = map (\[x, y] -> (x,y)) (splitEvery 2

pairList)↪→

99 crossed = map (crossover d) pairs `using` parList

rdeepseq↪→

100

11



101 numRs = length pop * repLength d

102

103 spltAtEvery l = (splitEvery (repLength d) old ,

new)↪→

104 where (old, new) = splitAt numRs l

105

106 -- 4) take odds and elements to switch to when

mutating randomly↪→

107 (splitRs, rs2) = spltAtEvery rs1

108 (splitRvs, nextRvs) = spltAtEvery rvs

109 zippedList = zip3 splitRs splitRvs crossed

110

111 mutated = map (\(rands, rvals, sol) -> mutate d

mutationPct rands rvals sol) zippedList

`using` parList rdeepseq

↪→

↪→

112

113 -- VERBOSE

114 -- putStrLn £ "The top rated solution for this

generation is:\n" ++ showSol t topSolution ++

"\nwith fitness " ++ show topFitness

↪→

↪→

115 -- putStrLn £ "The top fitness is " ++ show

topFitness↪→

116 if curIters > 1

117 then gaLoop mutated rs2 nextRvs (curIters-1)

118 else do

119 putStrLn $ "The top rated solution after all

iterations is:\n" ++ showSol d topSolution

++ "\nwith fitness " ++ show topFitness

↪→

↪→

120

121 where

122 -- take first element that exceeds a cumulative

prob threshold↪→

123 pickrandom _ [(_,c)] _ _ = c

124 pickrandom r ((_,c):ct) (p:pt) upto

125 | upto + p >= r = c

126 | otherwise = pickrandom r ct pt (upto + p)

127 pickrandom _ _ _ _ = []

A.2 Genetic Algorithm Solver

1 module GA(

2 GAData,

3 dataRange,

4 repLength,

5 fitness,

6 maxFitness,

12



7 showSol,

8 crossover,

9 mutate,

10 initialize

11 ) where

12

13 import Data.List.Grouping(splitEvery)

14

15 class GAData a where

16 dataRange :: a -> (Int, Int)

17 repLength :: a -> Int

18 fitness :: a -> [Int] -> Int

19 maxFitness :: a -> Int

20 showSol :: a -> [Int] -> [Char]

21

22

23 -- These functions will be common to all genetic instances

24 initialize :: GAData a => a -> [Int] -> Int -> ([[Int]], [Int])

25 initialize d l popSize = (splitEvery r vals, newVals)

26 where

27 r = repLength d

28 (vals, newVals) = splitAt (r*popSize) l

29

30

31

32 {-

33 The following will be implemented as Uniform Crossover:

34 We could generate a random number to see which int is kept

in the child.↪→

35 We will use splitting instead.

36 References:

37 How to generate different pcts

38

https://mail.haskell.org/pipermail/beginners/2010-April/004058.html↪→

39 -}

40 crossover :: GAData a => a -> ([Int], [Int]) -> [Int]

41 crossover d (a, b) = take half a ++ drop half b

42 where (half, _) = quotRem (repLength d) 2

43

44

45 mutate :: GAData a => a -> Float -> [Float] -> [Int] -> [Int] ->

[Int]↪→

46 mutate _ mutPct pcts rvs sol = map keep $ zip3 pcts rvs sol

47 where

48 keep (r, x', x)

49 | r > mutPct = x

13



50 | otherwise = x'

A.3 NQueens Problem Module

1 module NQueens(

2 NQueens(NQueens)

3 ) where

4

5 import GA

6 import Data.List(intercalate, intersperse)

7

8 newtype NQueens = NQueens Int

9 deriving Show

10

11 instance GAData NQueens where

12 dataRange (NQueens n) = (0, n-1)

13 repLength (NQueens n) = n

14 fitness d@(NQueens n) queens = maxFitness d - vertCols -

diagCols1 - diagCols2↪→

15 where

16 calc l = sum $ map checkMult l

17 checkMult x = if x > 1 then x-1 else 0

18 posQueens = zip [0..] queens

19 cols f = calc [length $ filter (f i) posQueens | i <-

[(-n)..(n-1)]]↪→

20 vertCols = cols (\i (_, column) -> i == column)

21 diagCols1 = cols (\i (row, column) -> row == column + i)

22 diagCols2 = cols (\i (row, column) -> row == n - column +

i)↪→

23 maxFitness (NQueens n) = fst $ quotRem (n*(n-1)) 2

24 showSol (NQueens n) queens = intercalate "\n" $ map line queens

25 where line x = intersperse ' ' $ (replicate x 'x') ++ "Q" ++

(replicate (n-x-1) 'x')↪→

A.4 Travelling Salesman Problem Module

1 module TSP(

2 TSP(TSP)

3 ) where

4

5 import GA

6 import qualified Data.Map as M

7 import Data.List.Unique(allUnique)

8 import Data.Maybe(fromMaybe)

9

10 data TSP = TSP Int CityMap

14



11 deriving Show

12

13 type CityMap = M.Map City (M.Map City Weight)

14 type City = Int

15 type Weight = Int

16

17 instance GAData TSP where

18 dataRange (TSP n _) = (0, n-1)

19 repLength (TSP n _) = n

20 fitness d@(TSP _ cm) order = allCities*pathExists*(maxFitness d

- distance)↪→

21 where

22 allCities = if allUnique order then 1 else 0

23 paths = zip order $ tail order

24 maybeDistance (s, e) = M.lookup s cm >>= M.lookup e

25 maybeDistances = map maybeDistance paths

26 distances = map (fromMaybe 0) maybeDistances

27 distance = sum distances

28 pathExists = if product distances > 0 then 1 else 0

29 maxFitness (TSP n cm) = 1 + (n-1) * M.foldr (\m acc -> max acc

$ M.foldr max 0 m) 0 cm↪→

30 -- we add 1 to the maxFitness so that "longest" paths get

fitness 1, but invalid paths get fitness 0↪→

31 showSol _ order = show order

References

[1] Stephen Edwards. strategies.pdf.

[2] Waqqas Iqbal. N-Queen problem using Genetic Algorithm, November 2021.
original-date: 2019-01-01T06:41:39Z.

[3] Uddalok Sarkar and Sayan Nag. An adaptive genetic algorithm for solving
n-queens problem. CoRR, abs/1802.02006, 2018.

[4] Eric Stoltz. Evolution of a salesman: A complete genetic algorithm tutorial
for Python, March 2021.

15


