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1 Problem Statement

In the paper "EpiSimdemics: an Efficient Algorithm for Simulating the Spread of Infectious
Disease over Large Realistic Social Networks" [1] the authors describe an algorithm for pre-
dicting the spread of a virus through a given population, given a series of interactions between
the members of the population. Traditional disease models work by simulating each event
(a group of people, some of whom are infectious, at a location for a given period of time), in
serial, constantly updating each individuals health status after each interaction. This means to
compute the model, you either implement a global clock and process each event in order, or
build a dependency graph of all the events and parse this graph as you compute the outcomes.
Both of these models will be hard to parallelize and expensive to compute.

The novel idea in EpiSimdemics relies on a fact that we have seen play out throughout the
Covid pandemic: diseases have a minimum latency period, D,,;,. Latency in this case refers to
a period of time between when an individual is infected and when they are infectious (can
infect other people). What this means from an algorithm perspective though, is that if you are
at time ¢ in your simulation, no one that is not already infected can become infectious until
time t + Dy,;,. This means that all the events in (¢, t + D,,;,) are independent of each other, and
hence can be processed potentially out of order, and in parallel. EpiSimdemics does just that, it
works by iterating in intervals of At < D,,;,, and for each iteration, process all the events in
parallel. Once that is complete, update each individuals health status (which can also be done
in parallel), and then start the next iteration.

The goal of this project is to implement (a slightly simplified) version of the algorithm described
in the paper in Haskell, and to be able to show the performance benefit gained by enabling
parallelism in the algorithm.

The final code for the project can be found in this github repo.

2 Explanation of Algorithm

There are three main steps in the algorithm: transitioning each individuals health state ac-
cording to a predecided disease model, computing the outcome of each event in the specified
time window, and updating each individuals state based on the outcome of each event. As
mentioned above, the algorithm works by iterating over intervals of At and within each interval
performing the steps described in the below sections.

2.a Disease Model Health State Transitioning

When predicting the spread of a disease, there needs to be a model of how the disease progresses
through an individual. In a simple model, the basic states are uninfected, infected and latent,
infectious, and recovered. See the below model for an example that has some probabilistic
behavior:


https://github.com/aschreiber1/episimdemics
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— untreated —#  ---- Vaccine ----+

As we have previously discussed, EpiSimdemics relies heavily on the fact that the infected
and latent period, lasts for a non trivial amount of time, usually 1-2 days. The first step per
time period is to update each person, to make sure they are in the appropriate health state
for the next time period. LE. if they have been infected and latent for the required number of
days, they become infectious, and so on. The formal algorithm describes how someone can
transition states part way through a time period, and in that case you split them up into two
people, one for the time period where they are in the first state, and one for the second. To
simplify the implementation for this project, I will not do this, and assume that people can
only transition health states at the start of a new time period. I will use a simple model that
roughly resembles Covid, using a 3 day latency period, and a 10 day infectious period.

2.b Event Outcome Computations

An event is a group of people in a particular location for a particular period of time. In order
to compute the likelihood that a person, p;, gets infected we first need define a few variables.
Let 7 be the length of the event, and N be the number of infectious people at the location. To
resemble Covid, we will use 7 in units of 15 minutes. Let r; be the infectivity of the disease
for person j, this is a percentage of how easy it is for a given person to spread the disease. To
simplify the algorithm, we will assume infectivity is a constant, r. Let s; be the susceptibility
of person i, this is a percentage representing how susceptible person i is to getting infected.
Let p be the transmissibility of the disease, which is how well the disease spreads from person
to person. Some diseases spread in the air, like Covid, and are highly transmissible, while
other diseases are less so. Putting all of this together we will use the following equation for
determining the probability that person i gets infected with the disease, given they are in a
room with N people for time 7:
pi = 1- eXpTNln(l—rs,-p)

What this equation looks like is for a fixed y = 7N, if y = 1 (in a room with 1 person for 15
minutes), then as rs;p goes from 0 to 1, the percentage chance of getting infected increase
linearly. For y between 0 and 1, the growth is exponential, meaning that you have a sub linear
chance of getting the disease. As y increases past 1, the curve becomes logarithmic, steepen-
ing as y gets large, increasing your changes substantially of getting infected, even with low rs;p.

This step of the algorithm will process each event, compute this equation for each person in
the event, simulate the experiment to see if the person ended up getting infected, and store the
outcome of that to a list of event of outcomes for each person.
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2.c Post Events Per Person Processing

The post processing step is the most straightforward step. Given person i and a list of outcomes
of the events for the person (which are 1 for newly infected, and 0 for not infected) just ’logical
and’ the results together and update the persons health state.

3 Dataset Generation

Although in the papers associated with EpiSimdemics they describe performance stats on
particular datasets that they generated, they do not publish these datasets. This meant I had to
generate the dataset for the simulation. What I did was pick a fixed amount of people (I used
100, 1000, 10000, and 100000) and a fixed number of locations (usually the number of people
divided by 10, but more on this later), and then for each person per day, pick a random number
of events (uniformly distributed from 0-5) and randomly distribute each event to a location.
Each location per person then has a time they arrive and a time they leave, for this I randomly
assigned a length of time, guaranteeing that no person is in two places at once. On top of this,
I also assigned each event a random number between 0 and 1. What this means is that I can
use this in the probability calculation, so that way the Haskell program is stateless and there
are no discrepancies in performance stats due to odd probabilistic events. So in summary a
row in the dataset looks like:

Day | Person | Location | StartTime | FinishTime | Chance
0 1 14 370 455 0.68

This means that on Day 0, Person 1 when to Location 14, from time 370 to 455, and for them to
get infected in the event the disease model needs to predict a greater than 68 percent chance
they got infected. Finally there is one extra dataset, People, that gives the initial state of each
person, i.e. whether they are healthy or unhealthy. I chose to start with a small initially infected
population of 2 people. On the main testing dataset I used, in 60 days, the disease had spread
from those 2 people to 2230 people in total out of 10000.

4 Implementations

In this section I will talk through the different implementations of the algorithm, the perfor-
mance of each version, and any pitfalls that each one might have had. All of the versions have
the same main steps in common:

1. Read the data from the People (initial states) file and the Events file, and parse them into
data structures.

2. For each day for 60 days process the events for that day according to the algorithm
discussed above.

3.

For the parallelism, I only focused on the second step, which is what the algorithm focuses on,
i.e. how can we distribute the event result calculations across multiple cores. I will call step
two the "core function" below. For each algorithm I will use the dataset with 10000 people and
100 locations as a reference to compare performance across them. Each algorithm was run on
my local computer with is a 2013 Macbook pro with 4GB of memory and 2 CPUs, which are
hyperthreaded into 4 logical CPUs. When running with parallelism I used the N4 argument.
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For this dataset it takes about 25 seconds to read the data, so this will be worth keeping in
mind for Amdahl’s Law as we do performance calculations below.

4.a First Implementation

The first implementation of the core function was focused on simplicity and without explicit
parallelism in mind. Each version in this implementation takes three arguments: an array
of people types, a Map of Maps from Day to Location to an array of event types, and a day
number. Each version produces an array of people in the updated state after the day has been
processed.

4.a.1 Basic Non Parallel Version
The basic steps of this implementation are as follows:

1. Transition each persons health state in the array using a function applied via a map
function.

2. Create a map data structure of person id to their health state. This is partially done using
a map function.

3. Generate the list of events per day by folding all the events for each location for each
day.

4. For each event, generate the outcome of that event (whether the person got sick or not),
by applying the probability function discussed above. This is also done using a map
function.

5. Create a Map type to map each person to the list of event results for that person.

6. For each person, process the event results, by seeing if they got infected in any of the
events. This is also done using a map function.

This is the relatively straight forward way to implement the algorithm described in the paper
in a non parallel way.

For performance this algorithm averaged 130 seconds to process the dataset. This 130 seconds
will serve as our initial baseline for improvements. You can see the Threadscope output here:



4.a First Implementation 4 IMPLEMENTATIONS

File View Move Help

B kR Qaa

Key|Traees| | Timeline
I running 0s 50s. 100s
—GC | ! ! ! ! . ! . | . . s
GC waiting Actvity
| create thread
seq GCreq
I par GC req
l migrate thread
S e A AR
I shutdown Fl- |
I user message
I perf counter
I perftracepoint
I _all createspark
[ _all dudspark
| all overflowedsparké
l _all runspark
|_Lu_ fizzled spark
I _all GCed spark
b — L]
TlmelHeap|GC|Sparks1a|s Spark sizes | Process info | Raw events
Totaltime:  130.557s
Mutator time: 118.100s
GC time: 12.456s
Productivity: 90.5% of mutator vs total
K —

EpiSimdemics-exe.eventiog (2037953 events, 130.557s)

The Threadscope shows relatively consistent performance with a few short garbage collects.

Above we noted that it takes about 25 seconds to read the data, and hence this part is non
parallel. This is about 19 percent of the total time. Hence using Amdahl’s Law we see:

1 1
= =254

S:
(1-P)++ 19+

In summary, given 4 CPUs, the best we could hope for is 2.54 times performance improvement
would be 51 seconds.

4.a.2 Basic Implementation With Parlist

This next implementation was just to 1 listed in the above breakdown.

This took it down to 105 Seconds, a 20 percent reduction. This is good, but not as good as I
would have hoped or Amdah!l’s Law would have predicted.
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Taking a look at the Threadscope we see we have few larger garbage collects, and although
each core is kept busy they are not fully busy, suggesting we are probably spending a bunch of
time creating sparks and not enough time doing valuable work.

4.a.3 Basic Implementation With Chunks and Parlist

Based on this, the idea here was to break the work up into chunks so that we could spend less
time creating sparks and more time doing valuable work. For this I broke the work into chunk
sizes of 40, there is a discussion on why 40 below.

In the end this new implementation took 139 Seconds, more time then the non parallel
implementation! How could things get worse? Looking at the Threadscope:
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We see that we are barely utilizing the other cores and most of the time is just spent on the
main core. After reviewing the code it became apparent that it was spending most of its time
going back and forth between chunked and non chunked datasets, and not actually doing
valuable work. This then gave rise to the idea that algorithm could be refactored to more
gracefully handle the chunking.

4.b Refactored Implementation

The goal of the refactor was two fold: first, to reduce the amount of non parallel calculations that
need to be done in each step, and second, to make it easier to have a chunked implementation
of the algorithm. Some of the main inefficiencies with the first algorithm were:

1. Creating a map from Person id to health state each iteration
2. Folding events per location into events per day each iteration
3. Adding all event results (positive and negative) into a map

4.

The refactored implementation eliminated all of these inefficiencies, by reordering some of
the operations, and also by keeping two maps, one the original map of maps for all events
and all locations, and one that just had the events for the given day, this way we do not need
the fold every iteration. One example is previously we created the map from person id to
health state, because the event simulation required to know each persons health state (already
infected people cant get sick). Instead I changed it to not require that, and then later in the
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final step only update a persons health status if they are not already sick. This removed one
map statement from the algorithm.

4.b.1 Refactored Version Non Parallel

The refactor did eliminate some inefficiencies so it makes sense to set a new baseline for
performance. Running the refactored version without parallelism resulted in a run time of 117

seconds, a 10 percent reduction in the original runtime. Keeping the 25 second file loading
time, we see using Amdahl’s Law:

1

(1-P)++

=243

.786

So we see in a theoretically perfect parallel implementation we would see a 2.43 times improve-
ment given 4 cores, resulting in a run time of 48.1 seconds.

For reference we can see the Threadscope output here:
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4.b.2 Refactored Version with Chunks and Parlist

Finally, we get to the refactored version where the work is broken up into chunks of 40 (40
people per group, 40 events per group), and we use parlist to distribute the chunks across
multiple cores. One of the key changes here is that the core function in this implementation
takes a list of lists of people instead of a list of people. This way the core function does not
need to chunk and dechunk the list of people at each step, reducing the total amount of work
done. Also because we processing chunks of events instead of individual events, it was much
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easier for the work to filter out non positive event results to happen in the distributing setting,
instead of in the non-distributed aggregation phase.

All of these changes resulted in a net runtime of 69 seconds, a net improvement 1.7 times.
Unfortunately this does not get particularly close the 2.43 times improvement we would hope
to see in a perfect implementation, but it is still a significant improvement. As mentioned
above however, my machine is only hyperthreaded to 4 cores which does not actually provide
the same performance as having 4 separate CPUs. So potentially a lot of the performance gap
is coming from that discrepancy.
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5 Performance Summary

5.a Algorithm Overall Performance

Here we can see a summary of the performance of each algorithm described above.
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We can see that from the initial non parallel algorithm to the final parallel algorithm, the
improvement was almost 2 times on my machine, a significant improvement.

5.b Chunk Size Performance

One important question when deciding to split the data up into chunks is to decide what
should the chunk size be. To determine this I picked a few random chunk sizes and then tried
to optimize doing some kind of binary search/gradient descent to find the best performance.
You can see a summary of chunk sizes for the 10000 people, 100 location dataset here:

10
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We can see that at really large or really small chuck sizes, performance is quite bad, in fact
at chunk sizes of 1 and 10000 performance is worse than the non parallel version. However
somewhere around a chunk size of 40 we hit peak performance. One interesting feature I am
not able to explain is that although performance starts to get worse as you get less than 40, at
a chunk size of 15, performance was almost identical to 40 (event though at 10 and 20 it was
worse.

Potentially one improvement here would be to have one chunk size for events and one for
people as they are different sets and could move independent of one another.

5.c Performance by Number of Locations

One interesting question is how does the number of locations impact the performance. Well
looking at the algorithm we can see that per event we filter the events at that location for
that day down to the intersecting ones. This means that the lower number of locations, the
more work there is to do per event, thus we would expect to see a smaller number of locations
meaning a slower algorithm. This is exactly what we do see:

11
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At 100 Locations we saw we achieve performance of about 69 seconds, at 10 locations though
performance is 447 seconds, much much worse. However at 1000 and 10000 locations perfor-
mance steadies out to 43 and 40 seconds respectively.

This does point to a potential optimization in our implementation, where instead of filtering
all events for a day to see which overlap, we could store the events in sorted order and do
a binary search to find the first event that overlaps, and then search from there. This could
potentially improve the runtime on 100 location dataset down to 40 seconds, like we see with
the 10000 location dataset.

5.d Dataset Growth Performance

Finally another interesting section is to analyse how the algorithm performs as the size of the
dataset increases. When I increased the number of people from 10,000 to 100,000 it started to
wreak havoc on my computer, using too much memory, and causing it to run unnecessarily
slow. We can see performance stats here:

12
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Performance by Number of Locations

People Locations Performance
100 10 0.410
1000 100 3.7
10000 1000 43
100000 10000 1880

So whereas up to 10000 we were seeing linear growth, adding 10 times more people took 10
times longer, it took almost 50 times longer to do handle the last 10 times jump. As stated
above, I believe this is a matter of the resources available on my computer. One potentially
improvement to reduce the amount of resources necessary would be to only load the events
for one day at a time from disk into memory, instead of loading all the events for all days into
memory.

6 Continuations

In the performance sections above I listed several performance improvements that could
potentially be made that would help reduce the runtime of the implementations. A summary
of those that would be worth trying out:

1. Using different chunk sizes for people and for events as they are different sizes (x people,
and on average n*x events a day, where n is the average number of events per person

per day).

2. Implementing a O(LogN) binary search based algorithm for finding overlapping events
instead of doing an O(N) algorithm.

3. Loading the events for one day into memory at a time to reduce overall memory use

4. Run this on a dedicated machine with more cores instead of my laptop. My laptop has a
bunch of other processes running on it, so results can be inconsistent based on whatever
else the laptop is running. Also my laptop only has two CPUs which is not ideal for
testing things out across multiple cores.

7 Summary

In summary over the course of the project I tried multiple different approaches to improve
performance including better structuring of the algorithms, better storing of the data, better
chunking of the data, and most importantly parallelism. After the several rounds of iterations
I was able to reduce the initial performance of 130 seconds, down to a final performance of 69
seconds, an 88 percent performance improvement.

13



REFERENCES 8 APPENDIX - CODE

References

[1] Barrett, Christopher L. and Bisset, Keith R. and Eubank, Stephen G. and Xizhou Feng
and Marathe, Madhav V. EpiSimdemics: an Efficient Algorithm for Simulating the Spread
of Infectious Disease over Large Realistic Social Networks. SC °08: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing

(2] Talwar, Kunal, and Udi Wieder. Overcoming the Scalability Challenges of Epidemic Simu-
lations on Blue Waters. 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, 2014

8 Appendix - Code

module Lib
( mainFunc
) where

import Data.List.Split ( splitOn, chunksOf )

import qualified Data.Map as Map

import qualified Data.Set as Set

import Control.Parallel.Strategies (using, parList, rseq)

latencyPeriod :: Int
latencyPeriod = 2
infectiousPeriod :: Int
infectiousPeriod = 6
infectivity :: Float
infectivity = 0.1
susceptibility :: Float
susceptibility = 0.1
transmissibility :: Float
transmissibility = 0.1
chunkSize :: Int

chunkSize = 15

-—- —- support versions of different parallel functions

-- parallelVersion :: Int

-- parallelVersion = 0

rsp :: Float

rsp = infectivity«susceptibility«transmissibility
disMult :: Float

disMult = log (1-rsp)

data HealthState = Uninfected | Infected | Infectious | Recovered
deriving (Enum, Eq, Show)

data Person = Person {pid :: Int, hState :: HealthState, hStateDays
Int} deriving (Show)
data Event = Event {ePid :: Int, loc :: Int, day :: Int, startTime
:: Int, endTime :: Int, chance :: Float} deriving (Show)

14
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transitionInfected :: Person -> Person
transitionInfected p
| days < latencyPeriod = Person {pid = pid p, hState = Infected,
hStateDays = days + 1}
| otherwise = Person {pid = pid p, hState = Infectious,
hStateDays = 0}
where days = hStateDays p

transitionInfectious :: Person -> Person
transitionInfectious p
| days < infectiousPeriod
Infectious , hStateDays
| otherwise = Person {pid
hStateDays = 0}
where days = hStateDays p

Person {pid = pid p, hState =
days + 1}
pid p, hState = Recovered,

-- Transion a person from one health state to another, each day

transitionHState :: Person -> Person
transitionHState p
| state == Infected = transitionInfected p
| state == Infectious = transitionInfectious p
| otherwise = p

where state = hState p

-— initial state of infectious is -1 so that we can update states on

first day
createPerson :: [String] -> Person
createPerson [x,"0"] = Person {pid = read x, hState = Uninfected,
hStateDays = 0}
createPerson [x,_] = Person {pid = read x, hState = Infectious,
hStateDays = -1}
createPerson _ = error "wrong arguments”
initalizePeople :: I0 [Person]
initalizePeople = do
contents <- readFile "people.csv"”
let records = tail $ words contents
let parsed = map (splitOn ",") records

return (map createPerson parsed)

createEvent :: [String] -> Event
createEvent [dayn,person,locn, start ,end, chancep]
= Event {ePid = read person, loc = read locn, day = read dayn,

startTime = read start, endTime = read end, chance = read
chancep}

createEvent _ = error "wrong arguments”

initalizeEvents :: I0 [Event]

initalizeEvents = do

contents <- readFile "dataset.csv"

15
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let records = tail $ words contents
let parsed = map (splitOn ",") records
return (map createEvent parsed)

-- createEventsMap :: [Event] -> Map.Map Int (Map.Map Int [Event])
-- createEventsMap xs = Map.map (Map. fromListWith (++) . map (\y ->

(loc y, [y]))) nxt
-- where nxt = Map. fromListWith (++) $ map (\x -> (day x, [x])) xs

createEventsMap2 :: [Event] -> Map.Map Int [Event]
createEventsMap2 xs = Map.fromListWith (++) $ map (\x -> (day x, [x

1) xs

createLocMap :: Map.Map Int [Event] -> Map.Map Int (Map.Map Int [
Event])

createLocMap eventsMap = Map.map (Map. fromListWith (++) . map (\y -»>
(loc y, [y]))) eventsMap

--Take an event, find the events for that location that overlap in
time, return a map of

--Length of time -> Number of people

findOverlappingEvents :: Event -> Map.Map Int [Event] -> Map.Map Int
Int

findOverlappingEvents event locMap = Map. fromListWith (+) $ map (\x
-> (x,1)) lengths

where locEvents = locMap Map.! loc event
filtered = filter (\x -> startTime event <= endTime x &&
endTime event <= startTime x) locEvents
lengths = map (\x -> max (startTime event) (endTime x) - min

(endTime event) (endTime x)) filtered

-—-Compute core disease formulat to see if the person got sick from
the event
simulateEvent :: Int -> Int -> Float -> Bool
simulateEvent numPeople time percentChance = percentChance < echance
where echance = 1 - exp (timeAdjustedspepFloat«disMult)
timeAdjusted = fromIntegral time/15
pepFloat = fromIntegral numPeople
—— simulateEvent _ _ _ = False

-- —-- Process an event, if someone is not unifected , they cant get
sick, so ignore them

-- processEvent :: Event -> Map.Map Int HealthState -> Map.Map Int [
Event] -> Bool

-— processEvent event hstates locMap

-- | null overlap = False
-- | state == Uninfected = and results
-- | otherwise = False

-- where state = hstates Map.! ePid event
-- results = map (\(x,y) -> simulateEvent x y echance) $ Map
.toList overlap

16
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-— overlap = findOverlappingEvents event locMap
-- echance = chance event

-— Process an event, we will ignore the result of this if someone is
not sick later

processEvent2 :: Event -> Map.Map Int [Event] -> Bool
processEvent2 event locMap

| null overlap = False

| otherwise = and results

where results = map (\(x,y) -> simulateEvent x y echance) $ Map.

toList overlap
overlap = findOverlappingEvents event locMap

echance = chance event
-— processEventResults :: Person -> Map.Map Int [Bool] -> Person
-- processEventResults p rmap = case results of

-- Just xs -> if or xs then infected else p

- Nothing -> p

-- where results = Map.lookup (pid p) rmap

-- infected = Person {pid = pid p, hState = Infected,
hStateDays = 0}

processEventResults2 :: Person -> Bool -> Person
processEventResults2 p infected = if infected then infectedRes else
P

where infectedRes = Person {pid = pid p, hState = Infected,
hStateDays = 0}

-—- —- This is the heart of the program, it processes the events for

a day
-- —- and updates the health status
-- processDailyEventsBasic :: [Person] -> Map.Map Int (Map.Map Int [

Event]) -> Int -> [Person]

-— processDailyEventsBasic p emap dayNum = do

- --Step 1, transition events

-- let transitioned = map transitionHState p ‘using ° parList rseq

-- --Step 2, process all events for a given day

- let hstateslist = map (\x -> (pid x, hState x)) transitioned
using ° parList rseq

- let hstates = Map. fromList hstateslist

-- let locMap = emap Map.! dayNum

-- let eventsForDay = Map. foldr (++) [] locMap

-- let processedEvents = map (\x -> (ePid x, [processEvent x
hstates locMap])) eventsForDay ‘using ° parList rseq

-- let eventResults = Map. fromListWith (++) processedEvents

-- --Step 3, process all event results

-- map (\x -> processEventResults x eventResults) transitioned
using ° parList rseq

¢

I3

-— processDailyEventsBasic2 :: [Person] -> Map.Map Int (Map.Map Int
[Event]) -> Map.Map Int [Event] -> Int -> [Person]
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--— processDailyEventsBasic2 p locMapFull eventMap dayNum = do

- --Step 1, transition events

-- let transitioned = map transitionHState p ‘using ° parList rseq

-- --Step 2, process all events for a given day

-- let locMap = locMapFull Map.! dayNum

-— let eventsForDay = eventMap Map.! dayNum

- let processedEvents = map (\x -> (ePid x, processEvent2 x
locMap)) eventsForDay ‘using ° parList rseq

-- let changedPeople = Set.fromList $ map fst $ filter snd
processedEvents

-- --Step 3, process all event results

- map (\x -> processEventResults2 x ((hState x == Uninfected) &&
Set.member (pid x) changedPeople)) transitioned ‘using ° parList
rseq

processEventsChunk :: [Event] -> Map.Map Int [Event]-> [Int]

processEventsChunk events locMap = map fst filtered

where filtered = filter snd $ map (\x -> (ePid x, processEvent2 x

locMap)) events

processEventResultChunk :: [Person] -> Set.Set Int -> [Person]
processEventResultChunk people changedPeople = map (\x ->
processEventResults2 x ((hState x == Uninfected) && Set.member (

pid x) changedPeople)) people

processDailyEventsChunked2 :: [[Person]] -> Map.Map Int (Map.Map Int
[Event]) -> Map.Map Int [Event] -> Int -> [[Person]]
processDailyEventsChunked2 p locMapFull eventMap dayNum = do
--Step 1, transition events
let transitioned = map (map transitionHState) p ‘using® parList
rseq
--Step 2, process all events for a given day
let locMap = locMapFull Map.! dayNum
let eventsForDay = chunksOf chunkSize $ eventMap Map.! dayNum
let processedEvents = map (\x -> processEventsChunk x locMap)
eventsForDay ‘using ° parList rseq
let changedPeople = Set.fromList $ concat processedEvents
--Step 3, process all event results
map (\x -> processEventResultChunk x changedPeople) transitioned
using ° parList rseq

3

-— processDailyEventsChunked :: [Person] -> Map.Map Int (Map.Map Int
[Event]) -> Int -> [Person]

-- processDailyEventsChunked p emap dayNum = do

-- let pChunked = chunksOf chunkSize p

-- let transitioned = map (map transitionHState) pChunked ‘using *
parList rseq

-— --Step 2, process all events for a given day

-— let hstateslist = map (\x -> map (\y -> (pid y, hState y)) x)
transitioned ‘using ° parList rseq

-- let hstates = Map. fromList $ concat hstateslist
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-— let locMap = emap Map.! dayNum

-- let eventsForDay = Map. foldr (++) [] locMap

-- let eventsForDayChunked = chunksOf chunkSize eventsForDay

-- let processedEvents = map (\x -> map (\y -> (ePid y, [
processEvent y hstates locMap])) x) eventsForDayChunked ‘using *
parList rseq

- let eventResults = Map. fromListWith (++) (concat
processedEvents)

-- --Step 3, process all event results

-- let out = map (\x -> map (\y -> processEventResults y
eventResults) x) transitioned ‘using ° parList rseq

-= concat out

-- processDailyEvents :: [Person] -> Map.Map Int (Map.Map Int [Event
J]) -> Int -> [Person]

-- processDailyEvents p emap dayNum

-- | parallelVersion == 0 = processDailyEventsBasic p emap dayNum

- | otherwise = processDailyEventsChunked p emap dayNum

-- —-- For each day, process daily events and update the health
states

-—- —— This is basically the core "loop" of the program that
processes the events

-- —- for each day, one by one

-- mainFlow :: ([Person], Map.Map Int (Map.Map Int [Event]), Int) ->
[Person ]

-— mainFlow (p, _, 60) = p ——-haskell does not let you match against
variables , so 60 here is the max number of days

-- mainFlow (p, m, n) = mainFlow (processDailyEvents p m n, m, n+1)

-- —-- For each day, process daily events and update the health
states

-—- —— This is basically the core "loop" of the program that
processes the events

-- —- for each day, one by one

-- mainFlow2 :: ([Person], Map.Map Int [Event], Map.Map Int (Map.Map
Int [Event]), Int) -> [Person]

-- mainFlow2 (p, _, _, 60) = p —--haskell does not let you match
against variables, so 60 here is the max number of days

-- mainFlow2 (p, eMap, locMap, n) = mainFlow2 (

processDailyEventsBasic2 p locMap eMap n, eMap, locMap, n+1)

mainFlow3 :: ([[Person]], Map.Map Int [Event], Map.Map Int (Map.Map
Int [Event]), Int) -> [[Person]]

mainFlow3 (p, _, _, 60) = p --haskell does not let you match against
variables , so 60 here is the max number of days

mainFlow3 (p, eMap, locMap, n) = mainFlow3 (

processDailyEventsChunked2 p locMap eMap n, eMap, locMap, n+1)

wasInfected :: Person -> Int
wasInfected p
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| state == Uninfected = 0
| otherwise = 1
where state = hState p

totallnfected :: [Person] -> Int
totallnfected p = sum $ map wasInfected p

-- mainFuncV1l :: 10 ()

-- mainFuncV1 = do

-- initalState <- initalizePeople

-- putStrLn $ "Starting Number of Infected: " ++ show (

totallnfected initalState)
-—— events <- initalizeEvents

-- let eventsMap = createEventsMap events

- let finalState = mainFlow (initalState , eventsMap, 0)

-- putStrLn $ "Total Number of Infected: " ++ show (totallnfected
finalState)

-- return ()

-— mainFuncV2 :: 10 ()

-- mainFuncV2 = do

-- putStrLn "Initializing People”

-- initalState <- initalizePeople

-- putStrLn $ "Starting Number of Infected: " ++ show (
totallnfected initalState)

-- events <- initalizeEvents

- putStrLn "Creating Events Map"

-- let eventsMap = createEventsMap2 events

-— putStrLn  "Creating Loc Map"

-- let locMap = createLocMap eventsMap

-- putStrLn "Running Main flow"

-- let finalState = mainFlow2 (initalState , eventsMap, locMap, 0)

-- putStrLn $ "Total Number of Infected: " ++ show (totallnfected
finalState)

-— return ()

mainFuncV3 :: 10 ()
mainFuncV3 = do
putStrLn "Initializing People”
initalState <- initalizePeople
putStrLn $ "Starting Number of Infected: " ++ show (totallnfected
initalState)
events <- initalizeEvents
putStrLn "Creating Events Map"
let eventsMap = createEventsMap2 events
print $ head $ eventsMap Map.! 0
putStrLn "Creating Loc Map"
let locMap = createLocMap eventsMap
print $ head $ (locMap Map.! 0) Map.! 1
putStrLn "Running Main flow"
let finalState = mainFlow3 (chunksOf chunkSize initalState ,
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eventsMap , locMap, 0)

putStrLn $ "Total Number of Infected: " ++ show (totallnfected (
concat finalState))

return ()

--Two different main funcs to keep old slower wversion around for
reference

mainFunc :: I0 ()

mainFunc = mainFuncV3
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