
COMS 4996 Parallel Functional Programming Final
Project – Fall 2021 - Bingo

Deepakraj Dharmapuri Selvakumar - dd3068

December 20, 2021

1 Description
Bingo is a game where each player matches numbers called out by the game host in their
respective bingo board. A Bingo board is a 5 x 5 matrix where each cell has randomly placed
unique numbers from 1 to 25. When the game host calls out a number, each player strikes out
the number from their board. When the player has a row or a column or any of the diagonals
of strikes, then that player wins, if both player gets the strikes at the same time, then it’s a
draw.

2 Data
Since its a casual and fun game I wanted to make, I made it interactive where the user can give
the number of players and dimensions as an input and as in real scenario, we will have "bingo"
cards generated for the user. and then checks for bingo will happen in parallel. But in reality,
5x5 boards are small and very fast to calculate in a system. Hence I increased the dimensions
to 25x25 and 50x50. I also increased the number of players from 2 to 5, 50, 100 to play with the
complexity and see how much of an improvement the parallel algorithm can make.

3 Strategy
I expressed these as matrix and used pretty print matrix from package Data.Matrix to display
Bingo Cards to the user. There were three points of focus where I could parallelize here.

- Parallelize strike box when the game host calls a number

- Parallelize checkWin - which basically checks row, col, diag in parallel.

- Parallelize the above check for all the players

In order to achieve the above, I used the concept of parList rseq for parallelizing the strikeBox
and checkWin for individual players while I used parPair for parallelizing row check and
column check.

1

4 Actual Bingo Game and Output
Listing 1: Bingo

(base) deepakrajds@DEEPAKRAJs −MBP bingo −hs % t ime . s t a c k −work /
i n s t a l l / x86_64 −osx /
b b 3 3 c 3 9 1 3 c 4 4 d 4 8 0 d 2 1 e 2 2 1 0 8 8 f 6 2 d 8 3 7 9 4 6 c a d c 1 2 8 2 4 c 4 a e 6 8 b a 3 3 1 0 4 6 2 a c a 8
/ 8 . 1 0 . 7 / bin / bingo −hs −exe t e s t / t e s t c a s e s / p l a y e r 1 −5 . t x t t e s t /
t e s t c a s e s / p l a y e r 2 −5 . t x t t e s t / t e s t c a s e s / gh5 . t x t 5 +RTS −N8 −
l s

4 6 9 25 24
20 19 17 13 7
16 3 1 11 15

2 12 14 23 21
22 18 5 8 10

22 1 25 15 21
19 6 14 3 18
23 10 4 13 20

2 12 17 9 7
11 5 8 24 16

Game Host c a l l s 9 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 20 " " 19 " " 17 " " 13 " " 7 "
" 16 " " 3 " " 1 " " 11 " " 15 "

" 2 " " 12 " " 14 " " 23 " " 21 "
" 22 " " 18 " " 5 " " 8 " " 10 "

P l a y e r 2

" 22 " " 1 " " 25 " " 15 " " 21 "
" 19 " " 6 " " 14 " " 3 " " 18 "
" 23 " " 10 " " 4 " " 13 " " 20 "

" 2 " " 12 " " 17 " " 'X ' " " 7 "
" 11 " " 5 " " 8 " " 24 " " 16 "

Game Host c a l l s 2 0 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 19 " " 17 " " 13 " " 7 "

" 16 " " 3 " " 1 " " 11 " " 15 "
" 2 " " 12 " " 14 " " 23 " " 21 "

2

" 22 " " 18 " " 5 " " 8 " " 10 "

P l a y e r 2

" 22 " " 1 " " 25 " " 15 " " 21 "
" 19 " " 6 " " 14 " " 3 " " 18 "
" 23 " " 10 " " 4 " " 13 " " 'X ' "

" 2 " " 12 " " 17 " " 'X ' " " 7 "
" 11 " " 5 " " 8 " " 24 " " 16 "

Game Host c a l l s 2 2 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 19 " " 17 " " 13 " " 7 "

" 16 " " 3 " " 1 " " 11 " " 15 "
" 2 " " 12 " " 14 " " 23 " " 21 "

" 'X ' " " 18 " " 5 " " 8 " " 10 "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 19 " " 6 " " 14 " " 3 " " 18 "
" 23 " " 10 " " 4 " " 13 " " 'X ' "

" 2 " " 12 " " 17 " " 'X ' " " 7 "
" 11 " " 5 " " 8 " " 24 " " 16 "

Game Host c a l l s 1 1 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 19 " " 17 " " 13 " " 7 "

" 16 " " 3 " " 1 " " 'X ' " " 15 "
" 2 " " 12 " " 14 " " 23 " " 21 "

" 'X ' " " 18 " " 5 " " 8 " " 10 "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 19 " " 6 " " 14 " " 3 " " 18 "
" 23 " " 10 " " 4 " " 13 " " 'X ' "

" 2 " " 12 " " 17 " " 'X ' " " 7 "
" 'X ' " " 5 " " 8 " " 24 " " 16 "

Game Host c a l l s 1 6 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "

3

" 'X ' " " 19 " " 17 " " 13 " " 7 "
" 'X ' " " 3 " " 1 " " 'X ' " " 15 "

" 2 " " 12 " " 14 " " 23 " " 21 "
" 'X ' " " 18 " " 5 " " 8 " " 10 "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 19 " " 6 " " 14 " " 3 " " 18 "
" 23 " " 10 " " 4 " " 13 " " 'X ' "

" 2 " " 12 " " 17 " " 'X ' " " 7 "
" 'X ' " " 5 " " 8 " " 24 " " 'X ' "

Game Host c a l l s 1 9 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 'X ' " " 17 " " 13 " " 7 "
" 'X ' " " 3 " " 1 " " 'X ' " " 15 "

" 2 " " 12 " " 14 " " 23 " " 21 "
" 'X ' " " 18 " " 5 " " 8 " " 10 "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 'X ' " " 6 " " 14 " " 3 " " 18 "

" 23 " " 10 " " 4 " " 13 " " 'X ' "
" 2 " " 12 " " 17 " " 'X ' " " 7 "

" 'X ' " " 5 " " 8 " " 24 " " 'X ' "

Game Host c a l l s 7 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 'X ' " " 17 " " 13 " " 'X ' "
" 'X ' " " 3 " " 1 " " 'X ' " " 15 "

" 2 " " 12 " " 14 " " 23 " " 21 "
" 'X ' " " 18 " " 5 " " 8 " " 10 "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 'X ' " " 6 " " 14 " " 3 " " 18 "

" 23 " " 10 " " 4 " " 13 " " 'X ' "
" 2 " " 12 " " 17 " " 'X ' " " 'X ' "

" 'X ' " " 5 " " 8 " " 24 " " 'X ' "

Game Host c a l l s 1 4 ! !

4

P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 'X ' " " 17 " " 13 " " 'X ' "
" 'X ' " " 3 " " 1 " " 'X ' " " 15 "

" 2 " " 12 " " 'X ' " " 23 " " 21 "
" 'X ' " " 18 " " 5 " " 8 " " 10 "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 'X ' " " 6 " " 'X ' " " 3 " " 18 "

" 23 " " 10 " " 4 " " 13 " " 'X ' "
" 2 " " 12 " " 17 " " 'X ' " " 'X ' "

" 'X ' " " 5 " " 8 " " 24 " " 'X ' "

Game Host c a l l s 1 0 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 'X ' " " 17 " " 13 " " 'X ' "
" 'X ' " " 3 " " 1 " " 'X ' " " 15 "

" 2 " " 12 " " 'X ' " " 23 " " 21 "
" 'X ' " " 18 " " 5 " " 8 " " 'X ' "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 'X ' " " 6 " " 'X ' " " 3 " " 18 "

" 23 " " 'X ' " " 4 " " 13 " " 'X ' "
" 2 " " 12 " " 17 " " 'X ' " " 'X ' "

" 'X ' " " 5 " " 8 " " 24 " " 'X ' "

Game Host c a l l s 8 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 'X ' " " 17 " " 13 " " 'X ' "
" 'X ' " " 3 " " 1 " " 'X ' " " 15 "

" 2 " " 12 " " 'X ' " " 23 " " 21 "
" 'X ' " " 18 " " 5 " " 'X ' " " 'X ' "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 'X ' " " 6 " " 'X ' " " 3 " " 18 "

" 23 " " 'X ' " " 4 " " 13 " " 'X ' "
" 2 " " 12 " " 17 " " 'X ' " " 'X ' "

5

" 'X ' " " 5 " " 'X ' " " 24 " " 'X ' "

Game Host c a l l s 2 3 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 'X ' " " 17 " " 13 " " 'X ' "
" 'X ' " " 3 " " 1 " " 'X ' " " 15 "

" 2 " " 12 " " 'X ' " " 'X ' " " 21 "
" 'X ' " " 18 " " 5 " " 'X ' " " 'X ' "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 'X ' " " 6 " " 'X ' " " 3 " " 18 "
" 'X ' " " 'X ' " " 4 " " 13 " " 'X ' "

" 2 " " 12 " " 17 " " 'X ' " " 'X ' "
" 'X ' " " 5 " " 'X ' " " 24 " " 'X ' "

Game Host c a l l s 3 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 'X ' " " 17 " " 13 " " 'X ' "
" 'X ' " " 'X ' " " 1 " " 'X ' " " 15 "

" 2 " " 12 " " 'X ' " " 'X ' " " 21 "
" 'X ' " " 18 " " 5 " " 'X ' " " 'X ' "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 'X ' " " 6 " " 'X ' " " 'X ' " " 18 "
" 'X ' " " 'X ' " " 4 " " 13 " " 'X ' "

" 2 " " 12 " " 17 " " 'X ' " " 'X ' "
" 'X ' " " 5 " " 'X ' " " 24 " " 'X ' "

Game Host c a l l s 1 3 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 'X ' " " 17 " " 'X ' " " 'X ' "
" 'X ' " " 'X ' " " 1 " " 'X ' " " 15 "

" 2 " " 12 " " 'X ' " " 'X ' " " 21 "
" 'X ' " " 18 " " 5 " " 'X ' " " 'X ' "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "

6

" 'X ' " " 6 " " 'X ' " " 'X ' " " 18 "
" 'X ' " " 'X ' " " 4 " " 'X ' " " 'X ' "

" 2 " " 12 " " 17 " " 'X ' " " 'X ' "
" 'X ' " " 5 " " 'X ' " " 24 " " 'X ' "

Game Host c a l l s 2 ! !
P l a y e r 1

" 4 " " 6 " " 'X ' " " 25 " " 24 "
" 'X ' " " 'X ' " " 17 " " 'X ' " " 'X ' "
" 'X ' " " 'X ' " " 1 " " 'X ' " " 15 "
" 'X ' " " 12 " " 'X ' " " 'X ' " " 21 "
" 'X ' " " 18 " " 5 " " 'X ' " " 'X ' "

P l a y e r 2

" 'X ' " " 1 " " 25 " " 15 " " 21 "
" 'X ' " " 6 " " 'X ' " " 'X ' " " 18 "
" 'X ' " " 'X ' " " 4 " " 'X ' " " 'X ' "
" 'X ' " " 12 " " 17 " " 'X ' " " 'X ' "
" 'X ' " " 5 " " 'X ' " " 24 " " 'X ' "

BINGO ! ! ! ∗ ∗ ∗ P l a y e r 2 Won ! ! ∗ ∗ ∗
t e s t / t e s t c a s e s / p l a y e r 1 −5 . t x t t e s t / t e s t c a s e s / p l a y e r 2 −5 . t x t 5

+RTS −N8 − l s 0 . 0 1 s u s e r 0 . 0 1 s system 11% cpu 0 . 1 7 0 t o t a l

FOR THE PURPOSES OF TESTING AND INCREASING COMPLEXITY, WE WILL
HIDE THE OUTPUT OF THE MATRIX HENCEFORTH

5 Tests and Inferences

5.1 The Two Player Scenario
At first, I started of with only two players, comparing 25x25 boards and 50x50 boards. It rather
seemed to have increased the time than decreasing when I parallelized which shows that in
case of two players, the serialization algorithm was faster. Below are the screenshots and
inferences.

25x25 Board

Serial:

test/testcases/player1-25.txt test/testcases/player2-25.txt 25 +RTS -N1 -ls

7

Total Time: 37.066ms

Parallel - 2 cores

test/testcases/player1-25.txt test/testcases/player2-25.txt 25 +RTS -N2 -ls

8

Parallel - 4 cores

test/testcases/player1-25.txt test/testcases/player2-25.txt 25 +RTS -N4 -ls

Inference

As we can see, the parallelization seemed to have increased as compared. It seemed to have
wasted a lot of time in garbage collecting and we can see spikes in all of the cores at only
some point. This clearly shows that parallelization doesnt help in have limited players and
having these checks. This was the similar or has worse case for 50x50 board with two players.
Clearly increasing the board size didnt help in parallelization and decrease in time. Why is
this happening? Probably because, ‘parList rseq‘ doesnt really help here in case of two players
as strikebox and checksolution has less things to parallelize and it ends up adding overhead to
it. Total sparks generated in 2 cores is about 4k of which only 136 got converted while the rest
being garbage collected while its similar in 4 cores about twice got coverted.

5.2 The 200 Players scenario with 50x50 board
In this scenario, we are determined to make use of parList rseq for strikeBox and CheckWin so
I have increased the number of players and increased the board dimensions to 50x50

Serial - 1 core ./test/testcases/players-50.txt ./test/testcases/gh-50.txt 50 +RTS -N1 -ls

Total Time: 30.142s

9

Parallel - 2 core ./test/testcases/players-50.txt ./test/testcases/gh-50.txt 50 +RTS -N2 -ls

Total Time: 23.229s

Inference

We can clearly see an improvement here from the serial algorithm. There is a decrease in time
by 23%. The ‘parList rseq‘ plays a crucial role in achieving this strat. Compared to the previous
scenario, it doesnt spend too much time in gargabe collecting. Both cores have been fully
utilized here as there are constant spikes ar regular intervals. Although there are instances of
garbage collection but overall it contributes significantly less. In case of sparks being generated,
there are about 1.5 millions sparks of which almost most of it are converted and it augments
the above inference.

Parallel - 4 core ./test/testcases/players-50.txt ./test/testcases/gh-50.txt 50 +RTS -N4 -ls

Total Time: 15.628s

Inference

We can clearly see an improvement here from the serial algorithm. There is a decrease in
time by 50%. The ‘parList rseq‘ plays a crucial role in achieving this strat. Compared to the
previous scenario, it doesnt spend too much time in gargabe collecting. All the four cores have
been fully utilized here as there are constant spikes are regular intervals. Although there are
instances of garbage collection but overall it contributes significantly less. In case of sparks
being generated, there are about 1.5 millions sparks of which almost most of it are converted
and it augments the above inference. In case of sparks being generated, there are about 1.5
millions sparks of which almost most of it are converted and it augments the above inference.

Parallel - 8 core ./test/testcases/players-50.txt ./test/testcases/gh-50.txt 50 +RTS -N4 -ls

10

Total Time: 16.714s

Inference

We do not see much of an improvement here when we used 8 cores, my machine has quad
core but that doesnt necessarily mean we can only run 4 threads at a time, it all depends on
the underlying OS / threading library on how to schedule these threads as we can see all the
"eight" threads have been utilized similar to the four thread one. We see a slight improvement
in the time as compared to the previous test with only four core. This is probably time taken
between the scheduling on 8 threads in four cores or something along those lines.

6 Overall Inference
Summarizing all the inferences from above

• Parallelization doesnt seem to help much in case of only two players even if we increase
the board dimensions mainly due to because of lot of time spent in garbage collecting as
compared to the serial algorithm and ‘parList rseq‘ not being utilized much.

• In case of 200 players with a larger board, parallelization helps us tremendously as we
can see constant spikes in all the cores with minimal time spent in garbage collecting.
The use of ‘parList rseq‘ is clearly being shown here.

11

7 Appendix - Code
Please find the code in proper format in zip file. Latex has some trouble displaying these.

{ −

F i n a l P r o j e c t − B ingo

De epak r a j Dharmapuri Se lvakumar − dd3068

−}

{ − # LANGUAGE Gen e r a l i z e dN ew t y p eD e r i v i n g # −}
{ − # LANGUAGE EmptyDataDec l s # −}
{ − # LANGUAGE TypeSynonymIn s t an c e s # −}
{ − # LANGUAGE F l e x i b l e I n s t a n c e s # −}
{ − # LANGUAGE F l e x i b l e C o n t e x t s # −}
{ − # LANGUAGE U n d e c i d a b l e I n s t a n c e s # −}

import qua l i f i ed Data . Map . S t r i c t as Map
import qua l i f i ed Data . L i s t as L i s t
import Data . L i s t . S p l i t a s S p l i t
import qua l i f i ed Data . Mat r ix as Mat
import System .Random (newStdGen , RandomGen , mkStdGen)
import System .Random . S h u f f l e (s h u f f l e ')
import C o n t r o l .Monad (forM)
import System . E x i t (d i e)
import C o n t r o l . P a r a l l e l . S t r a t e g i e s hiding (p a r P a i r)
import C o n t r o l .Monad . P a r a l l e l a s Mp
import System . IO . E r r o r
import System . Environment (getArgs , getProgName)

type MatBox = (Int , Int , Str ing) −− x , y , v a l
type P a t t e r n = (Int , Int) −− row , c o l , d i a g p a t t e r n

instance { − # OVERLAPPING # −} Show MatBox => Show (Int , Int ,
Str ing)

where
show (x , y , v a l) = (show v a l)

p a r P a i r : : S t r a t e g y (a , b)
p a r P a i r (a , b) = do

a ' <− r p a r a
b ' <− r p a r b
return (a ' , b ')

−− Gen L i s t f o r d imen s i o n s −−
g e n L i s t : : Int −> [Int]
g e n L i s t x = [1 . . x]

12

−− In c a s e p l a y e r s w i t h ou t p r e d e f i n e d b i ngo board s , t h e
p l a y e r s g e t a s s i g n e d random b ingo c a r d s −−

g e t S h u f f l e s : : RandomGen gen => [Int] −> Int −> gen −> [[Int]]
g e t S h u f f l e s mat p l a y e r gen = ((S p l i t . chunksOf 5 c a r d s) ! ! (

p l a y e r `mod` 5))
where

c a r d s = map (\ cur −> s h u f f l e ' cur
(length cur) gen) s p u r s

s p u r s = take 50 (map (\ c r −>
s h u f f l e ' c r (length c r) ngn)
permt)

permt = take 1000 (L i s t .
p e r m u t a t i o n s mat)

ngn = mkStdGen 40

g e t M a t r i x : : [Int] −> Mat . Mat r ix Int
g e t M a t r i x a = Mat . f r o m L i s t x x a where x = round (sqrt (

fromIntegral $ length a))

−− Get B ingo Board f o r a p l a y e r −−
ge tBoard : : Int −> Mat . Mat r ix Int −> Mat . Mat r ix MatBox
ge tBoard dim matc = Mat . m a t r i x dim dim $ \ (i , j) −> (i , j ,

show (Mat . getElem i j matc))

−− Fo r s t r i k i n g , we anyways have t o t r a v e r s e t h e whole matr ix ,
s i n c e we go row by row −−

searchRow : : (Int , Int) −> Mat . Mat r ix MatBox −> Int −> (Bool ,
Int)

searchRow (x , y) c a r d v a l | y > (Mat . n c o l s c a r d) = (False , y)
| vv == (show v a l) = (True , y)
| otherwise = searchRow (x , y + 1)

c a r d v a l
where (r r , cc , vv) = (Mat . getElem x

y c a r d)

s e a r c h M a t r i x : : Mat . Mat r ix MatBox −> (Int , Int) −> Int −> (Mat
. Mat r ix MatBox , (Int , Int))

s e a r c h M a t r i x c a r d (x , y) v a l | s t a t e = ((Mat . s e tE l em (x , co l ,
(show 'X ')) (x , c o l) c a r d) , (x , c o l))

| otherwise = s e a r c h M a t r i x c a r d (
x + 1 , y) v a l
where (s t a t e , c o l) = searchRow

(x , y) c a r d v a l

−− Row , Col , Diag c h e c k s −−
checkRow : : (Int , Int) −> Mat . Mat r ix MatBox −> Bool
checkRow (x , y) c a r d | y > (Mat . n c o l s c a r d) = True

13

| vv /= (show 'X ') = False
| otherwise = checkRow (x , y + 1) c a r d
where (r r , cc , vv) = (Mat . getE lem x y

c a r d)

checkCol : : (Int , Int) −> Mat . Mat r ix MatBox −> Bool
checkCol (x , y) c a r d | x > (Mat . nrows c a r d) = True

| vv /= (show 'X ') = False
| otherwise = checkCol (x + 1 , y) c a r d
where (r r , cc , vv) = (Mat . getE lem x y

c a r d)

checkDiag : : (Int , Int) −> Mat . Mat r ix MatBox −> Bool
checkDiag (x , y) c a r d | x > (Mat . nrows c a r d) = True

| vv /= (show 'X ') = False
| otherwise = checkDiag (x +1 , y +1) c a r d

where (r r , cc , vv) = (Mat . getE lem x y
c a r d)

−− Check S o l o r checkWin −−
c h e c k S o l u t i o n : : (Int , Int) −> Mat . Mat r ix MatBox −> Bool
c h e c k S o l u t i o n (x , y) c a r d | x == y = c r | | cc | | (checkDiag

(1 , 1) c a r d)
| otherwise = c r | | cc
where (cr , cc) = ((checkRow (x , 1)

c a r d) , (checkCol (1 , y) c a r d)) `
us ing ` p a r P a i r −− p a r a l l e l i z e d

s t r i k e B o x : : Int −> Mat . Mat r ix MatBox −> (Mat . Mat r ix MatBox , (
Int , Int))

s t r i k e B o x v a l c a r d = s e a r c h M a t r i x c a r d (1 , 1) v a l

p r i n t M a t r i x : : (Int , Mat . Mat r ix MatBox) −> Str ing
p r i n t M a t r i x (p l a y e r , mat) = " P l a y e r " ++ (show p l a y e r) ++ " \ n "

++ (Mat . p r e t t y M a t r i x mat)

−− playGame f o r each number t h e game h o s t c a l l s −−
playGame : : [Int] −> [Mat . Mat r ix MatBox] −> IO ()
playGame [] _ = putStrLn " Game Over "
playGame (x : xs) p c a r d s = do

l e t r e s t = map (\ c a r d −> s t r i k e B o x x c a r d) p c a r d s ` us ing `
p a r L i s t r s e q −− p a r a l l e l i z e d

l e t n c a r d s = map (\ (mat , (x , y)) −> mat) r e s t
l e t s o l s = map (\ (mat , (x , y)) −> c h e c k S o l u t i o n (x , y) mat)

r e s t ` us ing ` p a r L i s t r s e q −− p a r a l l e l i z e d
l e t winners = f i l t e r (\ (p l a y e r , s t a t e) −> s t a t e) $ zip [1 . . (

(length p c a r d s) : : Int)] s o l s
−− pu t S t r L n $ "Game Hos t c a l l s " ++ (show x) ++ " ! ! "

14

−− P r e l u d e . mapM_ (p u t S t r L n . p r i n tM a t r i x) (z i p [1 . . ((l e n g t h
p c a r d s) : : I n t)] n c a r d s) −− uncomment f o r o u t p u t

i f null winners then
playGame xs n c a r d s

e l se
i f (length winners) == 1 then

d i e $ " BINGO ! ! ! ∗ ∗ ∗ P l a y e r " ++ (show (f s t (head
winners))) ++ " Won ! ! ∗ ∗ ∗ "

e l se
d i e $ " I t s a Draw ! ! "

−−− j u s t added f o r t e s t c a s e s −−−
r e a d L i n e s : : FilePath −> IO [Str ing]
r e a d L i n e s = fmap l ine s . readFi le

make In teger : : [Str ing] −> [Int]
make In teger = map read
−−−− ∗ ∗ ∗ ∗ ∗ ∗ ∗ −−−−−

main : : IO ()
main = do a r g s <− getArgs

case a r g s of
[d , p] −> do

l e t d imens ions = read d : : Int
l e t p l a y e r s = read p : : Int
rng <− newStdGen
l e t mcards = map (\ p l a y e r −> (g e t S h u f f l e s (

g e n L i s t (d imens ions ∗ d imens ions)) p l a y e r (
mkStdGen p l a y e r)) ! ! (p l a y e r `mod` 5))
[1 . . (p l a y e r s : : Int)]

l e t ghcard = s h u f f l e ' (g e n L i s t (d imens ions ∗
d imens ions)) (d imens ions ∗ d imens ions) rng

putStrLn " These a r e the c u r r e n t p l a y e r s a s s i g n e d
 b ingo c a r d s "

Prelude .mapM_ (putStrLn . Mat . p r e t t y M a t r i x .
g e t M a t r i x) mcards

l e t bo ar ds = map (\ x −> ge tBoard d imens ions (
g e t M a t r i x x)) mcards

playGame ghcard boa rd s
[p l 1 f , p l 2 f , ghf , d] −> do

p1b <− r e a d L i n e s p l 1 f
p2b <− r e a d L i n e s p l 2 f
ghb <− r e a d L i n e s ghf
l e t pl1m = make In teger p1b
l e t pl2m = make In teger p2b
l e t ghm = make In teger ghb
l e t p l a y e r s = 2
l e t d imens ions = read d : : Int

15

l e t mcards = [pl1m , pl2m]
l e t ghcard = ghm
Prelude .mapM_ (putStrLn . Mat . p r e t t y M a t r i x .

g e t M a t r i x) mcards
l e t bo ar ds = map (\ x −> ge tBoard d imens ions (

g e t M a t r i x x)) mcards
playGame ghcard boa rd s

[p l a y e r s , ghf , d] −> do
s c a r d s <− r e a d L i n e s p l a y e r s
l e t hycards = map words s c a r d s
l e t d imens ions = read d : : Int
l e t mcards = map make In teger hyca rds
l e t p l a y e r s = (length mcards) : : Int
ghb <− r e a d L i n e s ghf
l e t ghm = make In teger ghb
l e t ghcard = ghm
putStrLn " These a r e the c u r r e n t p l a y e r s a s s i g n e d

 b ingo c a r d s "
−− P r e l u d e . mapM_ (p u t S t r L n . Mat . p r e t t yMa t r i x .

g e tMa t r i x) mcards −− uncomment f o r i n i t i a l
c a r d o u t p u t s

l e t bo ar ds = map (\ x −> ge tBoard d imens ions (
g e t M a t r i x x)) mcards

putStrLn " S t a r t game "
playGame ghcard boa rd s

_ −> do pn <− getProgName
d i e $ " Usage : " ++ pn ++ " <

board_d imens ions > < t o t a l _ p l a y e r s > or <
p l a y e r 1 _ f i l e > < p l a y e r 2 _ f i l e > <
g a m e h o s t _ f i l e > < dimens ions > or <
p l a y e r s _ f i l e > < g a m e h o s t _ f i l e > <
dimens ions > "

` c a t c h I O E r r o r ` \ e −> d i e $ case ioeGetFileName e of
Jus t fn | isDoesNotExistError e −> fn ++ " : No such

f i l e "
| isPermissionError e −> fn ++ " : P e r m i s s i o n

 d e n i e d "
_ | isUserError e −> " Usage : . / b ingo <

board_d imens ions > < t o t a l _ p l a y e r s > "
| otherwise −> show e

16

	Description
	Data
	Strategy
	Actual Bingo Game and Output
	Tests and Inferences
	The Two Player Scenario
	The 200 Players scenario with 50x50 board

	Overall Inference
	Appendix - Code

