COMS 4996 Parallel Functional Programming Final
Project — Fall 2021 - Bingo

Deepakraj Dharmapuri Selvakumar - dd3068

December 20, 2021

1 Description

Bingo is a game where each player matches numbers called out by the game host in their
respective bingo board. A Bingo board is a 5 x 5 matrix where each cell has randomly placed
unique numbers from 1 to 25. When the game host calls out a number, each player strikes out
the number from their board. When the player has a row or a column or any of the diagonals
of strikes, then that player wins, if both player gets the strikes at the same time, then it’s a
draw.

2 Data

Since its a casual and fun game I wanted to make, I made it interactive where the user can give
the number of players and dimensions as an input and as in real scenario, we will have "bingo"
cards generated for the user. and then checks for bingo will happen in parallel. But in reality,
5x5 boards are small and very fast to calculate in a system. Hence I increased the dimensions
to 25x25 and 50x50. I also increased the number of players from 2 to 5, 50, 100 to play with the
complexity and see how much of an improvement the parallel algorithm can make.

3 Strategy

I expressed these as matrix and used pretty print matrix from package Data.Matrix to display
Bingo Cards to the user. There were three points of focus where I could parallelize here.

- Parallelize strike box when the game host calls a number
- Parallelize checkWin - which basically checks row, col, diag in parallel.
- Parallelize the above check for all the players

In order to achieve the above, I used the concept of parList rseq for parallelizing the strikeBox
and checkWin for individual players while I used parPair for parallelizing row check and
column check.

4 Actual Bingo Game and Output
Listing 1: Bingo

(base) deepakrajds@DEEPAKRA]Js-MBP bingo-hs % time .stack-work/
install /x86_64-o0sx/
bb33¢3913c44d480d21e221088f62d837946cadc12824c4ae68ba3310462acal
/8.10.7/bin/bingo-hs-exe test/testcases/playerl -5.txt test/
testcases/player2 -5.txt test/testcases/gh5.txt 5 +RTS -N8 -
ls

4 6 9 25 24
20 19 17 13 7
16 3 1 11 15

22 18 5 8 10

22 1 25 15 21
19 6 14 3 18
23 10 4 13 20
2 12 17 9 7
11 5 8 24 16

Game Host calls 9!!

Player 1
" 4 " " 6 " "o X rn " 2 5 " " 2 4 "
" 2 0 n A\l 1 9 " n 1 7 Ll " 1 3 " A\ 7 "
" 1 6 " " 3 " " 1 " " 1 1 " " 1 5 "
" 2 " " 1 2 " " 1 4 " " 2 3 " " 2 1 "
" 2 2 " " 1 8 " " 5 " " 8 " " 1 O "
Player 2
" 2 2 " " 1 " " 2 5 " " 1 5 " " 2 1 "
" 1 9 " " 6 " " 1 4 " " 3 " " 1 8 "
" 2 3 " " l O " " 4 " " 1 3 " " 2 O "
" 2 " " 12 " " 17 A\l A\ lX Trn " 7 "
" 1 1 " " 5 " " 8 " " 2 4 " " 16 "

Game Host calls 20!!

Player 1
" 4 n A\ 6 " n 'X Trn " 2 5 n A\l 24 "
" YX "rn " 1 9 " " 1 7 " " 1 3 " " 7 "
" 1 6 " " 3 " " 1 " " 1 1 " " 15 "
" 2 " " 1 2 " " 1 4 " " 2 3 " " 2 1 "

" 22 n
Player 2

vop
"1g
vog

v
_

Game Host
Player 1

"
g
" 1g"

v
iy

Player 2

woxr
19"
"og
ey
vy

Game Host
Player 1

"
v
16"
e
oy

Player 2

iy
Y
" o3

e
iy

Game Host
Player 1

n4u

" 18"

vy
v
“10"
v g
e

calls

e
" 19"
vy
‘1o
Y

vy
e
“10"
"1
v

calls

e
“1g
vy
v g
Y

"1"
"6"
10"
" 12"

"5"

calls

"6"

"5"

" ogn
" 1q"
Vg
"y
rgn

221!

vy
vy
"y
"
v

v o5
"
"y
vy
rgn

111!

v
iy
"y
"
v

" o5
"y
"y
"y
vgn

16!!

" IXI "

"8"

" y5
vy
"y
o
Koqn

" o5
Y
"y
P
rgn

" ygn
rgn
"3
X
Voqn

" o5
" i3
X
" og
rg

" y5
vy
Y
X
Voqn

" 25u

" 10"

o
"yg
X

g
“1g

" ogn

g
v yg
ol
"10"

gl
" 1g"
X
Wy
" 1g

"o

W
" 15
ol
“10"

ol
“1g"
X

W
16"

u24"

vy
iy

Py
g

Player 2

oy
19
"ogn
e
iy

Game Host
Player 1

"
iy
oy

"o
woxgr

Player 2

g
v
P
v
oy

Game Host
Player 1

"
oy
g

Y
iy

Player 2

g
iy
" ogn

e
g

Game Host

19"
g
“ g
" 18"

g
e
" 10"
Y
e

calls

e
N
vy
"y
"yg

iy
v
" 1g"
1o
e

calls

e
vy
vy
Y
1"

"
e
“10"
v g
e

calls

vy
"y
"
Ve

" o5
"y
"y
"y
vgn

191!

vy
vy
"y

" 1g
Ve

" o5
" 1q
g
" yg
g

7!

vy
" y7
"y
" 1g
v

" og
e
"y
"y
rgn

141!

v i3
oy
" og

rg

" y5
vy
i3

vy

Wogn

v o5
"y3 "
oy
Vogn

rgn

" y5

vy
" i3
iy
Wogn

" o5
Y
g
P

vgn

T
e
"3
oy
Voqn

o
" q5
I
“10"

oy
“1g"
vy
W
vy

g

o
“y5
oy
Y

o
"ig
vy
v
R

g
vy
vy5
oy
“10"

o
18"
v g
v g
vy

Player 1

"
g
v

Y
iy

Player 2

v
iy
" og

e
g

Game Host
Player 1

"
v
vy

Py
oy

Player 2

iy
oy
" og

Y
woxr

Game Host
Player 1

"
iy
oy

Y
g

Player 2

oy
oy
Vogn
e

e
vy
vy
Y
‘1"

vy
e
"“10"
" g
e

calls

e
v
vy
‘g
Y

vy
e
vy
Y
v

calls

v
v

vy
“qgn
" 18"

vy
e
vy
1"

T
vy
"y
vy
v

" og
vy
"
vy
rgn

10!!

v
V7
"y
vy
v

" o5
vy
"y
vy
rgn

8!!

v
T
"y
vy
Ve

" o5
e

"y
vy

" o5
Y
g
P

vgn

" y5

vy
" yg
oy
Voqn

" o5
" i3
vy
Vo3

rgn

"5
vy
i3
vy
Vogn

" o5
vygn
iy
" og
v

" yg

vy
" i3
vy

W ogn
X
vyg
oy
“10"

o
18"
X
X
X

"o
X
v q5n
ol
X

gl
Y
X
X
X

"o
X
v 15
-
X

o
“1g"
X
X

" va "

Game Host
Player 1

"
iy
oy

Y
g

Player 2

oy
g
vy

Y
iy

Game Host
Player 1

"
oy
oy

Vo
woxgr

Player 2

g
vy
iy

Py
oy

Game Host
Player 1

"
g
vy

Y
oy

Player 2

" IXV "

"5"

calls

‘e
X
vy
" g
"ig

vy
e
X
1o
e

alls

e
X
X
‘1"
‘18"

vy
v
X
“qgn
e

alls

e
X
X
19"
Y

2

le "

3!

o
T
"y
o
v

" o5
X
"y
"y
X

3!

X
" y7
"y
X
ven

" os
o
"y
"y
o

131!

o
vy
"y
X
v

v125u

"24u

" o5
"y
o
X
X

"5
vy
" i3
X
Wogn

" o5
Y
X
X
X

" ys
X
i3
X
Koqn

" o5
X
X
X
X

" 15u

|Xv"

"o
X
v 15
-
X

"o
"1g
X
X
X

g
X
“ig
o
X

o
vig
X
X
X

o
X
v yg
g1
X

u21 "

" vxvu "6" " 'X'" " vxvu "18"

" va " " VXV " H4vv " va " " VXV "
" 2 " " 12 " " 17 " " VX rn " IX Ul
" er " "5" " vX! " 1124" " IXl "

Game Host calls 2!!

Player 1
" 4 " " 6 " "ot X rn " 2 5 " " 2 4 "
"o X Tn "o X rn " 1 7 " "o X Tn "o X rn
"o X Trn "o X rn " 1 A\l "o X Trn \l l 5 "
"o X "rn " 1 2 " "o X rn "o X "rn " 2 1 "
"o X Trn " 1 8 " " 5 " "o X Trn "o X rn
Player 2
"o X "n " 1 " " 2 5 " " 1 5 " " 2 1 "
"o X "rn " 6 " "o X rn "o X "rn " 1 8 "
"o X Tn "o X rn " 4 " "o X Trn "o X rn
"o X rn " 1 2 " " 1 7 " "o X Tn "o X rn
"o X Trn A\l 5 " "o X rn " 2 4 n "o X rn

BINGO!!! ««+ Player 2 Won!! ««=«
test/testcases/playerl -5.txt test/testcases/player2 -5.txt 5
+RTS -N8 -1s 0.01s user 0.01s system 11% cpu 0.170 total

FOR THE PURPOSES OF TESTING AND INCREASING COMPLEXITY, WE WILL
HIDE THE OUTPUT OF THE MATRIX HENCEFORTH

5 Tests and Inferences

5.1 The Two Player Scenario

At first, I started of with only two players, comparing 25x25 boards and 50x50 boards. It rather
seemed to have increased the time than decreasing when I parallelized which shows that in
case of two players, the serialization algorithm was faster. Below are the screenshots and
inferences.

25x25 Board
Serial:

test/testcases/player1-25.txt test/testcases/player2-25.txt 25 +RTS -N1 -Is

Timeline
0s 5ms 10ms 15ms 20ms 25ms 30ms
P T I S B P . |
M W
& R 1

CELTT R

Kl

Time | Hoap | GC | Sparkstats | Spark sizes | Process info | Raw events
Total tme: SLATILE

Mutator time: 36.139ms

GC time: 927.000ps|

Productivity: 97.5% of mutator vs total

Total Time: 37.066ms

Parallel - 2 cores

test/testcases/player1-25.txt test/testcases/player2-25.txt 25 +RTS -N2 -Is

I ey MU 1 AT
“ EmDmEE) U@ o8 A NSRRI

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events
Total me: ZEETELE

Mutator time: 44.313ms|

‘GC time: 2.680ms

Productivity: 94.3% of mutator vs total

Parallel - 4 cores

test/testcases/player1-25.txt test/testcases/player2-25.txt 25 +RTS -N4 -Is

8oms.

foms 1sms 20ms 251 ms. ms ssms Goms 65ms 7oms 75
| L | L | I 1 L 1 L L L 1 L |

 baun A TR TS 1

Vv ! ! i I s il d el

1 UL ol d I
LT TR g I T TRT T W

1 mE, a 111 RAR DO E

K|
v | Haap | GG [spark s | spark sizs | Process it | Raw averis

Inference

As we can see, the parallelization seemed to have increased as compared. It seemed to have
wasted a lot of time in garbage collecting and we can see spikes in all of the cores at only
some point. This clearly shows that parallelization doesnt help in have limited players and
having these checks. This was the similar or has worse case for 50x50 board with two players.
Clearly increasing the board size didnt help in parallelization and decrease in time. Why is
this happening? Probably because, ‘parList rseq” doesnt really help here in case of two players
as strikebox and checksolution has less things to parallelize and it ends up adding overhead to
it. Total sparks generated in 2 cores is about 4k of which only 136 got converted while the rest
being garbage collected while its similar in 4 cores about twice got coverted.

5.2 The 200 Players scenario with 50x50 board

In this scenario, we are determined to make use of parList rseq for strikeBox and CheckWin so
I have increased the number of players and increased the board dimensions to 50x50

Serial - 1 core ./test/testcases/players-50.txt ./test/testcases/gh-50.txt 50 +RTS -N1 -Is

Timeline

05 55 105 185 205

sy

Kl |
Tme | Heap | GG | Spark stas | Spark sizes | Process info | Raw events

Totaltime: 301425

Total Time: 30.142s

Parallel - 2 core ./test/testcases/players-50.txt ./test/testcases/gh-50.txt 50 +RTS -N2 -Is

Timeline

ooy

i}
T | Hoap | o | spar stats | sprk sizs | Processno | aw events
o205

Total tme: 2

Total Time: 23.229s
Inference

We can clearly see an improvement here from the serial algorithm. There is a decrease in time
by 23%. The ‘parList rseq’ plays a crucial role in achieving this strat. Compared to the previous
scenario, it doesnt spend too much time in gargabe collecting. Both cores have been fully
utilized here as there are constant spikes ar regular intervals. Although there are instances of
garbage collection but overall it contributes significantly less. In case of sparks being generated,
there are about 1.5 millions sparks of which almost most of it are converted and it augments
the above inference.

Parallel - 4 core ./test/testcases/players-50.txt ./test/testcases/gh-50.txt 50 +RTS -N4 -Is

Timeline

Total Time: 15.628s
Inference

We can clearly see an improvement here from the serial algorithm. There is a decrease in
time by 50%. The ‘parList rseq’ plays a crucial role in achieving this strat. Compared to the
previous scenario, it doesnt spend too much time in gargabe collecting. All the four cores have
been fully utilized here as there are constant spikes are regular intervals. Although there are
instances of garbage collection but overall it contributes significantly less. In case of sparks
being generated, there are about 1.5 millions sparks of which almost most of it are converted
and it augments the above inference. In case of sparks being generated, there are about 1.5
millions sparks of which almost most of it are converted and it augments the above inference.

Parallel - 8 core ./test/testcases/players-50.txt ./test/testcases/gh-50.txt 50 +RTS -N4 -Is

10

File View Move Help

Bllkasiaaa

Key [Traces [Bookmarks | Timeline

VI O A O O RO
0O O A O R A T DA
| S

‘Time | Heap | GG | Spark stats | Sparksizes | Process info | Raw events |

fozedsparc || Tomltme: 167145
| =L Mutator time: 9.550s
GCtme: 7.6

| L Goeasparc "
Procuctuiy: 57.1% ofmuttor s tta

Total Time: 16.714s

Inference

We do not see much of an improvement here when we used 8 cores, my machine has quad
core but that doesnt necessarily mean we can only run 4 threads at a time, it all depends on
the underlying OS / threading library on how to schedule these threads as we can see all the
"eight" threads have been utilized similar to the four thread one. We see a slight improvement
in the time as compared to the previous test with only four core. This is probably time taken
between the scheduling on 8 threads in four cores or something along those lines.

6 Overall Inference

Summarizing all the inferences from above

« Parallelization doesnt seem to help much in case of only two players even if we increase
the board dimensions mainly due to because of lot of time spent in garbage collecting as
compared to the serial algorithm and ‘parList rseq‘ not being utilized much.

+ In case of 200 players with a larger board, parallelization helps us tremendously as we
can see constant spikes in all the cores with minimal time spent in garbage collecting.
The use of ‘parList rseq’ is clearly being shown here.

11

7 Appendix - Code

Please find the code in proper format in zip file. Latex has some trouble displaying these.
{-
Final Project - Bingo

Deepakraj Dharmapuri Selvakumar - dd3068

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE EmptyDataDecls # -}

{-# LANGUAGE TypeSynonymlnstances # -}

{-# LANGUAGE Flexiblelnstances #-)

{-# LANGUAGE FlexibleContexts # -}

{-# LANGUAGE Undecidablelnstances #-}

import qualified Data.Map. Strict as Map

import qualified Data.List as List

import Data.List.Split as Split

import qualified Data.Matrix as Mat

import System .Random (newStdGen, RandomGen, mkStdGen)
import System.Random. Shuffle (shuffle ")

import Control.Monad(forM)

import System . Exit (die)

import Control.Parallel.Strategies hiding (parPair)
import Control.Monad. Parallel as Mp

import System.IO.Error

import System.Environment(getArgs, getProgName)

type MatBox = (Int, Int, String) -- x, y, wval
type Pattern = (Int, Int) -- row, col, diag pattern

instance {-# OVERLAPPING # -} Show MatBox => Show (Int, Int,

String)
where
show (x, y, val) = (show val)
parPair :: Strategy (a, b)

parPair (a, b) = do
a' <- rpar a
b' <- rpar b

return (a', b"')
-- Gen List for dimensions --

genList :: Int -> [Int]
genList x = [1..x]

12

-— In case players without predefined bingo boards, the
players get assigned random bingo cards --
getShuffles :: RandomGen gen => [Int] -> Int -> gen -> [[Int]]
getShuffles mat player gen = ((Split.chunksOf 5 cards) !! (
player "'mod 5))
where
cards = map (\cur -> shuffle ' cur
(length cur) gen) spurs
spurs = take 50 (map (\cr ->
shuffle ' cr (length cr) ngn)
permt)
permt = take 1000 (List.
permutations mat)
ngn = mkStdGen 40

getMatrix :: [Int] -> Mat. Matrix Int
getMatrix a = Mat.fromList x x a where x = round (sqrt (
fromIntegral $ length a))

-- Get Bingo Board for a player --

getBoard :: Int -> Mat.Matrix Int -> Mat. Matrix MatBox

getBoard dim matc = Mat. matrix dim dim $ \(i, j) -> (i, j,
show (Mat.getElem i j matc))

-—- For striking , we anyways have to traverse the whole matrix,
since we go row by row --

searchRow :: (Int, Int) -> Mat. Matrix MatBox -> Int -> (Bool,
Int)

searchRow (x, y) card val | y > (Mat.ncols card) = (False, y)

| vv == (show val) = (True, vy)
| otherwise = searchRow (x, y + 1)
card val
where (rr, cc, vv) = (Mat.getElem x
y card)
searchMatrix :: Mat.Matrix MatBox -> (Int, Int) -> Int -> (Mat

.Matrix MatBox, (Int, Int))
searchMatrix card (x, y) val | state = ((Mat.setElem (x, col,
(show 'X')) (x, col) card), (x, col))

| otherwise = searchMatrix card (
x + 1, y) val
where (state, col) = searchRow

(x, y) card val
-- Row, Col, Diag checks --

checkRow :: (Int, Int) -> Mat. Matrix MatBox -> Bool
checkRow (x, y) card | y > (Mat.ncols card) = True

13

| vv /= (show 'X') = False

| otherwise = checkRow (x, y + 1) card
where (rr, cc, vv) = (Mat.getElem x y
card)
checkCol :: (Int, Int) -> Mat.Matrix MatBox -> Bool
checkCol (x, y) card x > (Mat.nrows card) = True

|

| vv /= (show 'X') = False

| otherwise = checkCol (x + 1, y) card
where (rr, cc, vv) = (Mat.getElem x y

card)
checkDiag :: (Int, Int) -> Mat. Matrix MatBox -> Bool
checkDiag (x, y) card x > (Mat.nrows card) = True

|

| vv /= (show 'X') = False

| otherwise = checkDiag (x+1, y+1) card
where (rr, cc, vv) = (Mat.getElem x y

card)
-— Check Sol or checkWin --
checkSolution :: (Int, Int) -> Mat. Matrix MatBox -> Bool
checkSolution (x, y) card | x ==y = cr || cc || (checkDiag
(1, 1) card)
| otherwise = cr || cc
where (cr, cc) = ((checkRow (x, 1)
card), (checkCol (1, y) card))
using °= parPair -- parallelized
strikeBox :: Int -> Mat.Matrix MatBox -> (Mat.Matrix MatBox, (
Int, Int))
strikeBox val card = searchMatrix card (1, 1) val
printMatrix :: (Int, Mat.Matrix MatBox) -> String
printMatrix (player, mat) = "Player " ++ (show player) ++ "\n"
++ (Mat. prettyMatrix mat)
-- playGame for each number the game host calls --
playGame :: [Int] -> [Mat.Matrix MatBox] -> IO ()
playGame [] _ = putStrLn "Game Over"
playGame (x:xs) pcards = do
let rest = map (\card -> strikeBox x card) pcards " using’
parList rseq -- parallelized
let ncards = map (\(mat, (x, y)) -> mat) rest
let sols = map (\(mat, (x, y)) -> checkSolution (x, y) mat)
rest “using parList rseq -- parallelized

let winners = filter (\(player, state) -> state) $ zip [1..(
(length pcards) ::Int)] sols
-— putStrLn $ "Game Host calls " ++ (show x) ++ "!!l"

14

-— Prelude.mapM_ (putStrLn . printMatrix) (zip [1..((length
pcards) ::Int)] ncards) -- uncomment for output
if null winners then
playGame xs ncards

else
if (length winners) == 1 then
die $ "BINGO!!! «x» Player " ++ (show (fst (head
winners))) ++ " Won!! sxx"
else

die $ "Its a Draw!!"

--- just added for test cases ---

readLines :: FilePath -> IO [String]
readLines = fmap lines . readFile
makelnteger :: [String] -> [Int]
makelnteger = map read

—_—— XAk XX KKK —m

main :: I0 ()

main = do args <- getArgs
case args of
[d, p] -> do
let dimensions = read d :: Int
let players = read p :: Int

rng <- newStdGen

let mcards = map (\player -> (getShuffles (
genList (dimensions x dimensions)) player (
mkStdGen player)) !! (player ‘'mod 5))
[1..(players :: Int)]

let ghcard = shuffle' (genList (dimensions =«
dimensions)) (dimensions x dimensions) rng

putStrLn "These are the current players assigned
bingo cards"”

Prelude .mapM_ (putStrLn . Mat. prettyMatrix
getMatrix) mcards

let boards = map (\x -> getBoard dimensions (
getMatrix x)) mcards

playGame ghcard boards

[plif, pl2f, ghf, d] -> do

plb <- readLines plif

p2b <- readLines pl2f

ghb <- readLines ghf

let plim = makelnteger plb

let pl2m = makelnteger p2b

let ghm = makelnteger ghb

let players = 2

let dimensions = read d :: Int

15

let mcards = [plim, pl2m]

let ghcard = ghm

Prelude .mapM_ (putStrLn . Mat. prettyMatrix
getMatrix) mcards

let boards = map (\x -> getBoard dimensions (
getMatrix x)) mcards

playGame ghcard boards

[players, ghf, d] -> do
scards <- readLines players

let hycards = map words scards
let dimensions = read d :: Int
let mcards = map makelnteger hycards

let players = (length mcards) ::Int

ghb <- readLines ghf

let ghm = makelnteger ghb

let ghcard = ghm

putStrLn "These are the current players assigned
bingo cards"”

-— Prelude.mapM_ (putStrLn . Mat. prettyMatrix

getMatrix) mcards -- uncomment for initial
card outputs
let boards = map (\x -> getBoard dimensions (

getMatrix x)) mcards
putStrLn "Start game"
playGame ghcard boards
-> do pn <- getProgName
die $ "Usage: " ++ pn ++ " <
board_dimensions > <total_players > or <
player1_file > <player2_file > <
gamehost_file > <dimensions> or <
players_file > <gamehost_file> <
dimensions >"
“catchIOError ™ \ e -> die $ case ioeGetFileName e of

Just fn | isDoesNotExistError e -> fn ++ ": No such
file "
| isPermissionError e -> fn ++ ": Permission
denied"”
_ | isUserError e -> "Usage: ./bingo <

U

board_dimensions > <total_players >'
| otherwise -> show e

16

	Description
	Data
	Strategy
	Actual Bingo Game and Output
	Tests and Inferences
	The Two Player Scenario
	The 200 Players scenario with 50x50 board

	Overall Inference
	Appendix - Code

