
Autocomplete Dictionary System

Vikrant Satheesh Kumar (vs2778) and Aswin Tekur (at3584)

Contents

1. Introduction
2. Implementation

2.1 Sequential Autocomplete
2.2 Parallel Autocomplete

3. Summary
4. Code

4.1 Sequential Approach
4.2 Parallel Approach
4.3 Testing
4.4 Build Instructions

5. References

1. Introduction

The Autocomplete dictionary system aims to complete broken words based on the k-th
most frequent word from its dictionary if it exists. If there is a frequency tie, then any of
the matching words can be returned to complete the broken word.

For example, if the frequency dictionary is built based on the following (k=1):

- Harry Potter books:
“You’re a wiz Har” → “You’re a wizard Harry”

- The Matrix movie script:
“He’s beginn to bel” → “He’s beginning to believe”

- Dude Where’s My Car movie script:
“Dud where’s m c” → “Dude where’s my car”

2. Implementation

2.1 Sequential Autocomplete

A. The word frequency dictionary is built using the given input file filtering the words.

B. This dictionary is used to build a trie data structure which stores the word along
with its frequency to lookup and complete words.

C. The broken words to be filled are read from a file and completed using the k-th
most frequent word from the trie that matches the word pattern.

Example:
Dictionary built with: “You are a wizard Harry. I am a what?”
Broken sentence: “You ar a wiz har”
Completed sentence: “You are a wizard harry”

A. Word Frequency Dictionary B & C. Trie with word frequency

A. Building the word frequency dictionary

1. Words are filtered based on alphabetical presence and converted to lowercase.

wordCleaner :: [[Char]] -> [[Char]]

wordCleaner x = L.map (L.map toLower . L.filter isAlpha) x

Time taken to print cleaned words for different file sizes.

File Size Time

5.8 MB 0.682 s

84.1 MB 8.122 s

161.2 MB 19.580 s

322.4 MB 41.957 s

2. Word frequency map built with cleaned up words.

Approach 1: Inserting into a map and folding over it

mapWordsSeq :: (Foldable t, Ord k) => t k -> Map k Int

mapWordsSeq = L.foldr (\v s->insertWith (+) v 1 s) M.empty

Time taken to print frequency map of words for different file sizes on cleaned words.

File Size Time

5.8 MB 2.135 s

84.1 MB 26.689 s

161.2 MB 67.220 s

322.4 MB 136.660 s

Approach 2: Mapping each word to 1 and mapping to add the counts at the end

mapWords :: [String] -> [(String, Int)]

mapWords cw = L.map (\x -> (x,1)) cw

mapReduce :: (Ord k) => [(k, Int)] -> Map k Int

mapReduce x = (M.fromListWith (+) x)

Time taken to print frequency map of words for different file sizes for the cleaned words.

File Size Time

5.8 MB 2.270 s

84.1 MB 27.017 s

161.2 MB 68.055 s

322.4 MB 154.060 s

Comparing Approach 1 vs Approach 2

Approach 1 is faster than approach 2 based on the data to build the word frequency
map sequentially.

B. Building the word trie

Takes a list of words with its respective frequency and constructs a trie using Data.Trie.

trieBuilder :: [(String, Int)] -> Trie Int

trieBuilder w = T.fromList (L.map (\x -> (C.pack(fst x), -(snd x))) w)

Time taken to print trie for different file sizes with frequency map built using approach 2.

File Size Time

5.8 MB 2.442 s

84.1 MB 28.716 s

161.2 MB 70.680 s

322.4 MB 140.560 s

C. Word Complete

Returns the k-th most frequent word that matches a given word pattern from the trie if
present, else returns the word itself.

getK :: Ord b => [(C.ByteString, b)] -> Int -> [Char] -> [Char]

getK t k w = kWord

where

kWord = if length l > k then C.unpack (fst (l !! k !! 0)) else w

l = groupBy (\x y -> snd x == snd y) (L.sortBy (O.comparing snd) t)

Given a word, checks to see if the word is already complete, in which case it returns the
word itself. Otherwise, returns the k-th most frequent word that matches the word
pattern in the trie if present, else returns the given word without any change.

wordComplete :: Ord a => [Char] -> Int -> Trie a -> [Char]

wordComplete w k trie = kWord

where

resTrie = T.toList (T.submap (C.pack w) trie)

notPresent = isNothing (T.lookup (C.pack w) trie)

kWord = if (length resTrie > 0 && notPresent) then getK resTrie k w

else w

Given a list of words, complete it with the k-most frequent word if possible.

completeWords :: Ord a => [[Char]] -> Int -> Trie a -> [[Char]]

completeWords ws k trie = [wordComplete w k trie | w <- ws]

Dictionary File Size Broken File Size Time

5.8 MB 0.004 MB 2.235 s

21.2 MB 0.016 MB 8.009 s

42.2 MB 0.18 MB 21.906 s

74 MB 0.32 MB 42.687 s

2.2 Parallel Autocomplete

A. After the words have been filtered in parallel chunks, the list of cleaned words is
split up into multiple chunks using which multiple frequency maps are built in
parallel. These maps are further merged together in parallel until the number of
maps is reduced to a smaller extent after which it is merged sequentially to build
the final word frequency map.

B. After the word count is obtained, the map of the word count is converted into a
list which is broken down into chunks. These chunks are used to build individual
word frequency tries in parallel. These individual tries are merged together in
parallel summing up common word frequencies until the number of tries are
reduced to a smaller extent after which it is merged sequentially to build a
singular word frequency trie.

C. The broken words are read from a file and completed using the k-th most
frequent word from the trie that matches the word pattern using parallel chunks.

Example:
Dictionary built with: “You are a wizard Harry. I am a what?”
Broken sentence: “You ar a wiz har” → “You are a wizard harry”
Building word frequency dictionary of word chunk size 4

Building and merge tries of chunk size 4
[“you”: 1, “are”: 1, “a”: 2, “wizard”: 1]
[“harry”: 1, “I”: 1, “am”: 1, “what”: 1]

A. Building the word frequency dictionary

1. Words are filtered based on alphabetical presence and converted to lowercase

wordCleanerPar :: [[Char]] -> [[Char]]

wordCleanerPar x = L.map (L.map toLower . L.filter isAlpha) x `using` rpar

wordCleanerPar :: [[Char]] -> [[Char]]

wordCleanerPar x = L.map (L.map toLower . L.filter isAlpha) x `using`

parListChunk 10 rpar

wordCleanerPar :: [[Char]] -> [[Char]]

wordCleanerPar x = L.map (L.map toLower . L.filter isAlpha) x `using`

parBuffer 10 rdeepseq

let cw = concat $ runEval (parallelEval wordCleanerPar (chunksOf wSize w))

No significant speed up was observed while using parallel logic for word clean-up.

2. Word frequency map built with cleaned up words in parallel

Parallel Eval: Takes a function f and a list as input, and applies the function to every
element of the list in parallel using rpar.

parallelEval :: (a -> b) -> [a] -> Eval [b]

parallelEval _ [] = return []

parallelEval f (x:xs) =

do

y <- rpar (f x)

ys <- parallelEval f xs

return (y:ys)

Approach 1: Inserting into a map and folding over it

mapWordsSeq :: (Foldable t, Ord k) => t k -> Map k Int

mapWordsSeq = L.foldr (\v s->insertWith (+) v 1 s) M.empty

mergeMapSeq :: (Foldable t, Ord k) => t (Map k Int) -> [(k, Int)]

mergeMapSeq m = M.toList (L.foldr (M.unionWith (+)) M.empty m)

Words list is broken down into a chunk of size wSize and (numWords / wSize) maps are
built in parallel and the result is available in wordMap which is a list of maps. mSize
chunks of maps are taken and merged in parallel. Finally, the remaining small number
of maps are merged sequentially.

let wordMap = runEval (parallelEval mapWordsSeq (chunksOf wSize cw))

let wordMerge = runEval (parallelEval mergeMapSeq (chunksOf mSize wordMap))

let wordCount = M.toList (mergeMaps (L.map M.fromList wordMerge))

Time taken to print the word frequency map with approach 1

File Size wSize mSize Time
(N=2)

Time
(N=3)

Time
(N=4)

Time
(N=6)

5.8 MB 5000 50 1.894 s 1.778 s 1.381 s 1.290 s

84.1 MB 10000 50 21.643 s 19.267 s 17.303 s 13.081 s

161.2 MB 100000 75 59.40 s 50.831 s 39.179 s 33.793 s

322.4 MB 100000 100 122.08 s 108.70 s 83.570 s 59.940 s

File Size Speedup N=2 Speedup N=3 Speedup N=4 Speedup N=6

5.8 MB 1.13 x 1.20 x 1.56 x 1.66 x

84.1 MB 1.23 x 1.39 x 1.54 x 2.04 x

161.2 MB 1.13 x 1.32 x 1.72 x 1.99 x

322.4 MB 1.12 x 1.26 x 1.64 x 2.28 x

6 core sparks for 84.1 MB file - sequential printing

SPARKS: 1178 (1121 converted, 0 overflowed, 0 dud, 0 GC'd, 57 fizzled)

INIT time 0.001s (0.005s elapsed)
MUT time 18.956s (4.498s elapsed)
GC time 41.126s (9.178s elapsed)
EXIT time 0.000s (0.010s elapsed)
Total time 60.083s (13.692s elapsed)

Threadscope graph utilzing 6 cores for 84.1 MB file - sequential printing

Approach 2: Mapping each word to 1 and mapping to add the counts at the end

mapWords :: [String] -> [(String, Int)]

mapWords cw = L.map (\x -> (x,1)) cw

mapReduce :: (Ord k) => [(k, Int)] -> Map k Int

mapReduce x = (M.fromListWith (+) x)

mergeMaps :: (Foldable t, Ord k) => t (Map k Int) -> Map k Int

mergeMaps = L.foldr (M.unionWith (+)) M.empty

Words list is broken down into a chunk of size wSize and (numWords / wSize) lists with
(word, 1) mapping are built in parallel. These maps are reduced in parallel and finally
merged to generate the wordCount map.

let wordMap = runEval (parallelEval mapWords (chunksOf wSize cw))

let wordMerge = runEval (parallelEval mapReduce wordMap)

let wordCount = M.toList (mergeMaps wordMerge)

Time taken to print the word frequency map with approach 2

File Size wSize Time N=2 Time N=3 Time N=4 Time N=6

5.8 MB 5000 2.370 s 2.250 s 2.219 s 2.168 s

84.1 MB 10000 27.830 s 25.058 s 21.871 s 21.686 s

161.2 MB 100000 68.430 s 60.090 s 55.870 s 59.542 s

322.4 MB 100000 152.280 s 150.010 s 147.780 s 145.157 s

File Size Speedup N=2 Speedup N=3 Speedup N=4 Speedup N=6

5.8 MB 0.96 x 1.01 x 1.02 x 1.05 x

84.1 MB 0.97 x 1.08 x 1.24 x 1.25 x

161.2 MB 0.99 x 1.13 x 1.22 x 1.14 x

Approach 1 is significantly faster than approach 2 based on the results.

B. Building the word trie

WordCount which is a list of word and word frequency count pairs which is split into
chunks of size mSize. mSize number of tries are built in parallel by using the
parallelEval method. These tries are further merged together in parallel of size tSize
which in turn is finally merged into one word frequency trie.

trieBuilder :: [(String, Int)] -> Trie Int

trieBuilder w = T.fromList (L.map (\x -> (C.pack(fst x), -(snd x))) w)

mergeTries :: (Foldable t, Num a) => t (Trie a) -> Trie a

mergeTries t = L.foldr (T.mergeBy (\x y -> Just (x + y))) T.empty t

let wordRes = runEval (parallelEval trieBuilder (chunksOf mSize wordCount))

let trieMerge = runEval (parallelEval mergeTries (chunksOf tSize wordRes))

let trie = mergeTries trieMerge

Time taken to print the trie

File Size mSize tSize Time N=2 Time N=3 Time N=4 Time N=6

5.8 MB 200 30 2.033 s 1.808 s 1.415 s 1.333 s

84.1 MB 300 50 21.962 s 19.571 s 16.241 s 13.937 s

161.2 MB 300 30 58.972 s 54.656 s 40.528 s 33.254 s

322.4 MB 600 75 115.280 s 109.07 s 91.550 s 69.730 s

File Size Speedup N=2 Speedup N=3 Speedup N=4 Speedup N=6

5.8 MB 1.20 x 1.35 x 1.73 x 1.82 x

84.1 MB 1.31 x 1.47 x 1.77 x 2.06 x

161.2 MB 1.20 x 1.29 x 1.74 x 2.13 x

322.4 MB 1.22 x 1.29 x 1.54 x 2.02 x

4 core sparks for 84.1 MB file - sequential printing

SPARKS: 209 (191 converted, 0 overflowed, 0 dud, 2 GC'd, 16 fizzled)

INIT time 0.001s (0.008s elapsed)
MUT time 19.660s (4.170s elapsed)
GC time 44.361s (9.634s elapsed)
EXIT time 0.000s (0.008s elapsed)
Total time 64.023s (13.820s elapsed)

Threadscope graph utilzing 4 cores for 84.1 MB file - sequential printing

C. Word Complete

getK :: Ord b => [(C.ByteString, b)] -> Int -> [Char] -> [Char]

getK t k w = kWord

where

kWord = if length l > k then C.unpack (fst (l !! k !! 0)) else w

l = groupBy (\x y -> snd x == snd y) L.sortBy (O.comparing snd) t

wordComplete :: Ord a => [Char] -> Int -> Trie a -> [Char]

wordComplete w k trie = kWord

where

resTrie = T.toList (T.submap (C.pack w) trie) `using` rpar

notPresent = isNothing (T.lookup (C.pack w) trie)

kWord = if(length resTrie > 0&¬Present) then getK resTrie k w else w

completeWords :: Ord a => [[Char]] -> Int -> Trie a -> [[Char]]

completeWords ws k trie = [wordComplete w k trie | w <- ws]

Approach 1:

Takes a function, a list to operate on, k, and the built trie and applies the given function
to every element of the list in parallel using rpar.

parallelComplete :: (t1 -> t2 -> t3 -> a) -> [t1] -> t2 -> t3 -> Eval [a]

parallelComplete _ [] _ _ = return []

parallelComplete f (x:xs) k trie =

do

y <- rpar (f x k trie)

ys <- parallelComplete f xs k trie

return (y:ys)

Split the broken words into chunks of size nc and complete the words in parallel.

let res = concat $ runEval (parallelComplete completeWords (chunksOf nc ocw) k

trie)

aChunk → clean word chunks
bChunk → frequency map chunks
cChunk → trie building chunks
dChunk → trie merge chunks
eChunk → broken file chunk

Dict File
Size

Broken
File Size

a, b, c, d Time
(N=2)

Time
(N=3)

Time
(N=4)

Time
(N=6)

5.8 MB 0.004 MB 5000,50,200,3
0,1000

1.995 s 1.802 s 1.361 s 1.131 s

21.2 MB 0.016 MB 10000,50,300,
50,5000

7.054 s 5.412 s 5.031 s 4.755 s

42.2 MB 0.18 MB 20000,50,300,
50,5000

16.080 s 14.050 s 12.384 s 12.283 s

74 MB 0.32 MB 100000, 500,
300, 50, 10000

35.721 s 32.197 s 29.740 s 31.395 s

4 core sparks for 42.2 MB file
SPARKS: 452 (391 converted, 0 overflowed, 0 dud, 3 GC'd, 58 fizzled)

INIT time 0.001s (0.008s elapsed)
MUT time 12.214s (4.687s elapsed)
GC time 21.616s (7.003s elapsed)
EXIT time 0.000s (0.004s elapsed)
Total time 33.831s (11.701s elapsed)

Threadscope graph utilzing 4 cores for 42.2 MB file - sequential printing

Approach 2:

Takes a function, a list to operate on, k, built trie, and a cache and applies the given
function to every element of the list in parallel using rpar.

parallelCompCache :: (t1 -> t2 -> t3 -> t4 -> a) -> [t1] -> t2 -> t3 -> t4 ->

Eval [a]

parallelCompCache _ [] _ _ _ = return []

parallelCompCache f (x:xs) k trie cache =

do

y <- rpar (f x k trie cache)

ys <- parallelCompCache f xs k trie cache

return (y:ys)

Given a list of broken words, k, trie, and the cache, returns the completed words. If a
broken word was already seen and completed, then the result is stored in a cache and
returned for optimization.

compWithCache :: Ord a => [[Char]] -> Int -> Trie a -> Map [Char] [Char] ->

[[Char]]

compWithCache [] _ _ _ = []

compWithCache (w:ws) k trie cache

| ws == [] = [v]

| otherwise = v : compWithCache ws k trie nMap

where

comp = wordComplete w k trie

v = if res == "" then comp else res

nMap = if res == "" then M.insert w comp cache else cache

res = mapRes w cache

Split the broken words into chunks of size nc and complete the words in parallel with
cache.

let res = concat $ runEval (parallelCompCache compWithCache (chunksOf nc ocw)

k trie M.empty)

Approach 2 was significantly slower than approach 1 due to excessive computation and
the cache did not speed up the word complete process.

3. Summary

Upto 2x speedup was observed with the parallel implementation and increasing the
number of cores led to a significant increase in performance. Better performance can be
achieved if perfect chunk sizes are chosen for (a, b, c, d) for the suitable number of
cores. Building the wordMap and Trie in parallel yielded significant results as shown in
the implementation section. However, printing the output was the sequential bottleneck.

Future considerations: choosing the perfect chunk size for (a, b, c, d) would yield
better results. These variables could be further optimized based on the number of cores
available. The number of cores can also be increased further to observe greater
performance. Garbage collection could also be optimized further based on these chunk
sizes. The k-th most frequent word for each broken word could be cached in a parallel
hashmap so it doesn’t have to be calculated each time. Sorting the words based on the
frequency could also be improved by using a highly efficient parallel sorting algorithm.

Dict File
Size

Fill File
Size

a, b, c, d Time
(N=2)

Time
(N=3)

Time
(N=4)

Time
(N=6)

5.8 MB 0.004 MB 5000,50,200,3
0,1000

1.995 s 1.802 s 1.361 s 1.131 s

21.2 MB 0.016 MB 10000,50,300,
50,5000

7.054 s 5.412 s 5.031 s 4.755 s

42.2 MB 0.18 MB 20000,50,300,
50,5000

16.080 s 14.050 s 12.384 s 12.283 s

74 MB 0.36 MB 100000, 500,
300, 50, 10000

35.721 s 32.197 s 29.740 s 27.395 s

Dict File
Size MB

Fill File
Size
MB

a, b, c, d Speed
N=2

Speed
N=3

Speed
N=4

Speed
N=6

5.8 0.004 5k,50,200,30,1k 1.12 x 1.24 x 1.64 x 1.98 x

21.2 0.016 10k,50,300,50,5k 1.13 x 1.48 x 1.59 x 1.68 x

42.2 0.18 20k,50,300,50,5k 1.36 x 1.56 x 1.77 x 1.78 x

74 0.36 100k,500,300, 50, 10k 1.20 x 1.33 x 1.43 x 1.56 x

4. Code

Main.hs

module Main where

import Lib

import System.Environment(getArgs)

import GHC.Base (VecElem(Int16ElemRep))

import System.IO.Error(catchIOError, isUserError, ioeGetFileName, isDoesNotExistError)

import System.Exit(die)

main :: IO ()

main = do

[inpFile, kStr, destFile] <- getArgs

let k = read kStr::Int

runner inpFile (k-1) destFile

`catchIOError` \ e -> die $ case ioeGetFileName e of

_ | isUserError e -> "Usage: autocomplete <dict-filename> <k>

<broken-filename>"

| otherwise -> show e

4.1 Sequential Approach

Lib.hs

module Lib

(runner, wordCleaner, mapWordsSeq, trieBuilder, completeWords

) where

import Data.Char (toLower, isAlpha)

import Data.Map as M

import Data.List as L

import Data.Trie as T

import qualified Data.ByteString.Char8 as C

import Data.Ord as O

import Data.Maybe as Mb

import System.IO(IOMode(WriteMode), hPrint, openFile, hClose)

import System.IO.Error(catchIOError, isUserError, ioeGetFileName, isDoesNotExistError)

import System.Exit(die)

mapWordsSeq :: (Foldable t, Ord k) => t k -> Map k Int

mapWordsSeq = L.foldr (\v s->insertWith (+) v 1 s) M.empty

wordCleaner :: [[Char]] -> [[Char]]

wordCleaner x = L.map (L.map toLower . L.filter isAlpha) x

-- Conventional map reduce

-- mapWords :: [String] -> [(String, Int)]

-- mapWords cw = L.map (\x -> (x,1)) cw

-- mapReduce :: (Ord k) => [(k, Int)] -> Map k Int

-- mapReduce x = (M.fromListWith (+) x)

trieBuilder :: [(String, Int)] -> Trie Int

trieBuilder w = T.fromList (L.map (\x -> (C.pack(fst x), -(snd x))) w)

getK :: Ord b => [(C.ByteString, b)] -> Int -> [Char] -> [Char]

getK t k w = kWord

where

kWord = if length l > k then C.unpack (fst (l !! k !! 0)) else w

l = groupBy (\x y -> snd x == snd y) (L.sortBy (O.comparing snd) t)

wordComplete :: Ord a => [Char] -> Int -> Trie a -> [Char]

wordComplete w k trie = kWord

where

resTrie = T.toList (T.submap (C.pack w) trie)

notPresent = isNothing (T.lookup (C.pack w) trie)

kWord = if (length resTrie > 0 && notPresent) then getK resTrie k w else w

completeWords :: Ord a => [[Char]] -> Int -> Trie a -> [[Char]]

completeWords ws k trie = [wordComplete w k trie | w <- ws]

saveFile :: Show a => a -> IO ()

saveFile x = do

outh <- openFile "output.txt" WriteMode

hPrint outh x

hClose outh

runner :: FilePath -> Int -> FilePath -> IO ()

runner inpFile k destFile = do

content <- readFile inpFile

let w = words content

let cw = wordCleaner w

let wordCount = M.toList (mapWordsSeq cw)

let trie = trieBuilder wordCount

dest <- readFile destFile

let ow = words dest

let ocw = wordCleaner ow

let res = completeWords ocw k trie

saveFile res

`catchIOError` \ e -> die $ case ioeGetFileName e of

Just fn | isDoesNotExistError e -> "autocomplete: " ++ fn ++ ": openFile: does not

exist (No such file or directory)"

_ | isUserError e -> "Usage: autocomplete <dict-filename> <k>

<broken-filename>"

| otherwise -> show e

4.2 Parallel Approach

Lib.hs

module Lib

(runner, wordCleaner, mapWordsSeq, trieBuilder, completeWords

) where

import Data.Char (toLower, isAlpha)

import Data.Map as M

import Data.List as L

import Data.Trie as T

import Control.Parallel.Strategies

import qualified Data.ByteString.Char8 as C

import Data.Ord as O

import Data.List.Split (chunksOf)

import Data.Maybe as Mb

import System.IO(IOMode(WriteMode), hPrint, openFile, hClose)

import System.IO.Error(catchIOError, isUserError, ioeGetFileName, isDoesNotExistError)

import System.Exit(die)

parallelEval :: (a -> b) -> [a] -> Eval [b]

parallelEval _ [] = return []

parallelEval f (x:xs) =

do

y <- rpar (f x)

ys <- parallelEval f xs

return (y:ys)

parallelComplete :: (t1 -> t2 -> t3 -> a) -> [t1] -> t2 -> t3 -> Eval [a]

parallelComplete _ [] _ _ = return []

parallelComplete f (x:xs) k trie =

do

y <- rpar (f x k trie)

ys <- parallelComplete f xs k trie

return (y:ys)

-- Parallel complete with cache -- Approach 2

{-

parallelCompCache :: (t1 -> t2 -> t3 -> t4 -> a) -> [t1] -> t2 -> t3 -> t4 -> Eval [a]

parallelCompCache _ [] _ _ _ = return []

parallelCompCache f (x:xs) k trie cache =

do

y <- rpar (f x k trie cache)

ys <- parallelCompCache f xs k trie cache

return (y:ys)

-}

-- Different order reduce

mapWordsSeq :: (Foldable t, Ord k) => t k -> Map k Int

mapWordsSeq = L.foldr (\v s->insertWith (+) v 1 s) M.empty

mergeMapSeq :: (Foldable t, Ord k) => t (Map k Int) -> [(k, Int)]

mergeMapSeq m = M.toList (L.foldr (M.unionWith (+)) M.empty m)

-- Conventional Map reduce -- Approach 2

{-

mapWords :: [String] -> [(String, Int)]

mapWords cw = L.map (\x -> (x,1)) cw

mapReduce :: (Ord k) => [(k, Int)] -> Map k Int

mapReduce x = (M.fromListWith (+) x)

-}

mergeMaps :: (Foldable t, Ord k) => t (Map k Int) -> Map k Int

mergeMaps = L.foldr (M.unionWith (+)) M.empty

wordCleaner :: [[Char]] -> [[Char]]

wordCleaner x = L.map (L.map toLower . L.filter isAlpha) x

trieBuilder :: [(String, Int)] -> Trie Int

trieBuilder w = T.fromList (L.map (\x -> (C.pack(fst x), -(snd x))) w)

mergeTries :: (Foldable t, Num a) => t (Trie a) -> Trie a

mergeTries t = L.foldr (T.mergeBy (\x y -> Just (x + y))) T.empty t

getK :: Ord b => [(C.ByteString, b)] -> Int -> [Char] -> [Char]

getK t k w = kWord

where

kWord = if length l > k then C.unpack (fst (l !! k !! 0)) else w

l = groupBy (\x y -> snd x == snd y) (L.sortBy (O.comparing snd) t)

wordComplete :: Ord a => [Char] -> Int -> Trie a -> [Char]

wordComplete w k trie = kWord

where

resTrie = T.toList (T.submap (C.pack w) trie)

notPresent = isNothing (T.lookup (C.pack w) trie)

kWord = if (length resTrie > 0 && notPresent) then getK resTrie k w else w

completeWords :: Ord a => [[Char]] -> Int -> Trie a -> [[Char]]

completeWords ws k trie = [wordComplete w k trie | w <- ws]

-- Approach 2 with cache

{-

mapRes :: Ord k => k -> Map k [Char] -> [Char]

mapRes w cache = Mb.fromMaybe "" (M.lookup w cache)

compWithCache :: Ord a => [[Char]] -> Int -> Trie a -> Map [Char] [Char] -> [[Char]]

compWithCache [] _ _ _ = []

compWithCache (w:ws) k trie cache

| ws == [] = [v]

| otherwise = v : compWithCache ws k trie nMap

where

comp = wordComplete w k trie

v = if res == "" then comp else res

nMap = if res == "" then M.insert w comp cache else cache

res = mapRes w cache

-}

saveFile :: Show a => a -> IO ()

saveFile x = do

outh <- openFile "output.txt" WriteMode

hPrint outh x

hClose outh

runner :: FilePath -> Int -> FilePath -> IO ()

runner inpFile k destFile = do

content <- readFile inpFile

let w = words content

let cw = wordCleaner w

let aChunk = 20000

let bChunk = 50

let cChunk = 300

let dChunk = 50

let eChunk = 5000

let wordMap = runEval (parallelEval mapWordsSeq (chunksOf aChunk cw))

let wordMerge = runEval (parallelEval mergeMapSeq (chunksOf bChunk wordMap))

let wordCount = M.toList (mergeMaps (L.map M.fromList wordMerge))

-- Conventional map reduce -- Approach 2

-- let wordMap = runEval (parallelEval mapWords (chunksOf 10000 cw))

-- let wordMerge = runEval (parallelEval mapReduce wordMap)

-- let wordCount = M.toList (mergeMaps wordMerge)

let wordRes = runEval (parallelEval trieBuilder (chunksOf cChunk wordCount))

let trieMerge = runEval (parallelEval mergeTries (chunksOf dChunk wordRes))

let trie = mergeTries trieMerge

dest <- readFile destFile

let ow = words dest

let ocw = wordCleaner ow

-- With a word cache -- Approach 2

-- let res = concat $ runEval (parallelCompCache compWithCache (chunksOf 5000 ocw)

k trie M.empty)

let res = concat $ runEval (parallelComplete completeWords (chunksOf eChunk ocw) k

trie)

saveFile res

`catchIOError` \ e -> die $ case ioeGetFileName e of

Just fn | isDoesNotExistError e -> "autocomplete: " ++ fn ++ ": openFile: does not

exist (No such file or directory)"

_ | isUserError e -> "Usage: autocomplete <dict-filename> <k>

<broken-filename>"

| otherwise -> show e

4.3 Testing

Spec.hs

import Data.Map as M

import qualified Lib as L

import Data.Trie as T

t1 :: [[Char]] -> [[Char]] -> [Char]

t1 w res = if res == L.wordCleaner w then "t1 passed" else "t1 failed"

t2 :: (Foldable t, Ord k) => t k -> [(k, Int)] -> [Char]

t2 w res = if res == (M.toList (L.mapWordsSeq w)) then "t2 passed" else "t2 failed"

t3 :: Ord a => [[Char]] -> Trie a -> Int -> [[Char]] -> p -> p -> p

t3 ws trie k res tex1 tex2 = if res == (L.completeWords ws k trie) then tex1 else

tex2

main :: IO ()

main = do

print(t1 ["*ab", "HelLo", "world"] ["ab", "hello", "world"])

print(t2 ["hi", "hi"] [("hi", 2)])

let trie = L.trieBuilder [("youre", 1), ("a", 1), ("wizard", 2), ("wizards", 1),

("harry", 3), ("hardware", 1)]

print(t3 ["youre", "a", "wiz", "har"] trie 0 ["youre", "a", "wizard", "harry"] "t3

passed" "t3 failed")

print(t3 ["youre", "a", "wiz", "har"] trie 1 ["youre", "a", "wizards", "hardware"]

"t4 passed" "t4 failed")

4.4 Build Instructions

stack build

./autocomplete-exe [WORD_DICT_FILE] [k] [BROKEN_FILE] +RTS -ls -s -N4

Example:
./autocomplete-exe dict.txt 1 broken.txt +RTS -ls -s -N4
./autocomplete-exe dict.txt 1 broken.txt +RTS -ls -s -N1

stack test
- Includes basic tests to check frequency counts and trie autocomplete
- Tested against Shakespeare file set for frequency counts

5. References

https://stackoverflow.com/questions/2895748/how-to-write-list-to-file
https://en.wikipedia.org/wiki/MapReduce
https://hackage.haskell.org/package/bytestring-trie-0.2.6/docs/Data-Trie.html
https://hackage.haskell.org/package/split-0.2.3.4/docs/Data-List-Split.html#v:chunksOf

