
The Parallel Apriori Algorithm *

Hongfei Chen (hc3222)

December 23, 2021

1 Introduction

The report describes a parallel Haskell implementation of the Apriori Algorithm from the
paper ”Fast algorithms for mining association rules” (Agrawal & Srikant, 1994). Section 2
includes an overview of the Apriori Algorithm as well as the sequential implementation
in Haskell. Section 3 introduces two layers of parallelism being applied to the sequential
implementation, which significantly improves the performance of the Apriori Algorithm.

2 Apriori Algorithm

2.1 Overview

The Apriori Algorithm is an algorithm for data mining, in particular, association rule min-
ing. It searches for boolean association rule of the frequent itemsets in a dataset, which is
useful for discovering the items that tend to appear together in a transaction.

The main idea of the algorithm is that for every possible size of itemsets, generate the
candidate frequent itemsets from the smaller-sized frequent itemsets and then filter the
candidates based on the required minimum support value (Figure 1). The candidate gen-
eration consists of the join step (Figure 2) and the prune step (Figure 3), in which the algo-
rithm finds the candidate size-k itemsets by self-joining the size-(k − 1) itemsets, and then
prune those who have a subset which is not a size-(k − 1) itemset. Finally, the association
rules which satisfy the minimum confidence value will be output.

Figure 1: The Apriori Algorithm

*This is the final project report for COMS 4995 Parallel Functional Programming, Fall 2021.

1

Figure 2: apriori-gen Join Step

Figure 3: apriori-gen Prune Step

2.2 Haskell Implementaion

The program takes in three arguments, which are the filename of CSV dataset, the mini-
mum support value and the minimum confidence value, i.e. stack exec apriori-parallel-exe

<csv filename> <min support> <min confidence>. More usage information can be found in Ap-
pendix A and the README file. The output of the program is a set of association rules
with corresponding support and confidence value. The test datasets provided in the code
zip file are retail transaction datasets (Carrie, 2018). Hence, the association rule in this con-
text is that, if a customer bought product A, how likely they would buy product B, where
the likelihood is indicated by the confidence value. The support value, on the other hand,
describes how frequent an itemset appear in the transactions.

While the complete implementation can be found in Appendix B, this section will
demonstrate parts of the code that contain the essential steps of the Apriori Algorithm.
They are also significant to the parallelism implementation introduced in the next section.

The algorithm starts with the initial size-1 frequent itemsets, which are generated di-
rectly from the input transactions.

getInitFreqItemset :: Double -> [Itemset] -> [Itemset]

getInitFreqItemset minSupport transactions =

let initCandItemset = removeDup $

concatMap (\(Itemset t) -> map (Itemset . Set.singleton) $ Set.toList t) transactions

in filter (\cand -> getSupport transactions cand > minSupport) initCandItemset

Then, using the size-1 frequent itemsets as input, the “getFreqItemsets” function recur-
sively generates larger candidate itemsets through the aprioriGen function, and filter out
those don’t have enough support.

getFreqItemsets :: Double -> [Itemset] -> [Itemset] -> Maybe ([Itemset], [Itemset])

getFreqItemsets _ _ [] = Nothing

getFreqItemsets minSupport transactions currFreqItemset =

let nextCandItemset = aprioriGen currFreqItemset

nextFreqItemset = filter (\cand -> getSupport transactions cand > minSupport) nextCandItemset

in Just (currFreqItemset, nextFreqItemset)

2

In the aprioriGen function, it first does a self-join and then prune the results to make
sure that, for a size-k itemset, all its size-(k-1) subsets are in the frequent itemsets generated
in the previous iteration.

aprioriGen :: [Itemset] -> [Itemset]

aprioriGen iss =

let

-- join step

selfJoin = [Itemset (a `Set.union` b)

| (Itemset a) <- iss, (Itemset b) <- iss, validateCandidate a b]

validateCandidate a b = Set.size (a `Set.difference` b) == 1

-- prune step

nonFrequentSubsets (Itemset i) = all (\s -> Itemset s `elem` iss) (properSubsets i)

powerSetList s = Set.toList $ Set.powerSet s

properSubsets s = filter (\x -> Set.size x == Set.size s - 1) (powerSetList s)

candItemset = filter nonFrequentSubsets selfJoin

in removeDup candItemset

Figure 4 shows an example eventlog for running the sequential program on a test
dataset containing 2000 transactions, with the minimum support value set to 0.1% and 50%
minimum confidence. The average runtime for the sequential implementation is about
40.32 seconds. As this is the baseline of the program performance, the tests run in the next
section are all using this set of input parameters, unless otherwise specified.

Figure 4: Sequential program eventlog
(2000 transactions, 0.1% support, 50% confidence)

3 Parallelism

There are two layers of parallelism applied to the implementation to improve the per-
formance of the program. The first and inner layer uses the parMap function from the
package Control.Monad.Par. The second and outer layer adopts the idea of MapRe-
duce.

3.1 Par Monad

The parMap function applies a given function to each element in the list in parallel, fully
evaluates them and return the results. My first attempt was to apply parMap in the
getFreqItemsets function when it is filtering the itemset without enough support value.
Since this is a filtering process instead of simple mapping, the results returned by parMap
need to be concatenated.

3

getFreqItemsets :: Double -> [Itemset] -> [Itemset] -> Maybe ([Itemset], [Itemset])

getFreqItemsets _ _ [] = Nothing

getFreqItemsets minSupport transactions currFreqItemset =

let nextCandItemset = aprioriGen currFreqItemset

--- parMap

nextFreqItemsetLst = runPar $

parMap (\cand -> (cand, getSupport transactions cand > minSupport)) nextCandItemset

nextFreqItemset = concat $ [[cand] | (cand, isFreq) <- nextFreqItemsetLst, isFreq]

in Just (currFreqItemset, nextFreqItemset)

By converting sequential filtering procedure to a parallel one, the runtime of the pro-
gram gets reduced by about 10 seconds. Despite the performance improvement, the event-
log (Figure 5) shows that apparently the parallelism is only taking effect on the second half
of the program.

Figure 5: Parallelism with parMap eventlog 1
(2000 transactions, 0.1% support, 50% confidence)

Therefore, I apply the same parallelism logic to the getInitFreqItemset function,
since the process of getInitFreqItemset is analogous to that of getFreqItemsets.

getInitFreqItemset :: Double -> [Itemset] -> [Itemset]

getInitFreqItemset minSupport transactions =

let initCandItemset = removeDup $

concatMap (\(Itemset t) -> map (Itemset . Set.singleton) $ Set.toList t) transactions

--- parMap

initFreqItemset = runPar $

parMap (\cand -> (cand, getSupport transactions cand > minSupport)) initCandItemset

in concat $ [[cand] | (cand, isFreq) <- initFreqItemset, isFreq]

However, as the getInitFreqItemset function will only be called once at the initial
step and it is not computationally heavy, making it parallel has very limited impact on
the program performance- on average, it reduces the runtime by 2 seconds. As shown in
Figure 6, there still remains a rather large chunk of sequential process.

4

Figure 6: Parallelism with parMap eventlog 2
(2000 transactions, 0.1% support, 50% confidence)

Given the results above, the sequential part appears to happen within the aprioriGen
function. Notice that the prune step of aprioriGen is performance pretty heavy compu-
tation, as it needs to check for every size-(k − 1) subset for a long list of itemsets returned
by the join step. Hence, I added another layer of parallelism to the prune step.

aprioriGen :: [Itemset] -> [Itemset]

aprioriGen iss =

let

-- join step

selfJoin = [Itemset (a `Set.union` b)

| (Itemset a) <- iss, (Itemset b) <- iss, validateCandidate a b]

validateCandidate a b = Set.size (a `Set.difference` b) == 1

-- prune step

nonFrequentSubsets (Itemset i) = all (\s -> Itemset s `elem` iss) (properSubsets i)

powerSetList s = Set.toList $ Set.powerSet s

properSubsets s = filter (\x -> Set.size x == Set.size s - 1) (powerSetList s)

--- parMap

candItemsetLst = runPar $ parMap (\cand -> (cand, nonFrequentSubsets cand)) selfJoin

candItemset = concat $ [[cand] | (cand, isSubSet) <- candItemsetLst, isSubSet]

in removeDup candItemset

By adding parallelism to all these three functions, the performance of the resulting the
program has reduced to about 23 seconds, which is almost a half of the 40-second sequen-
tial program. From the evenlog (Figure 7), the implementation renders good parallelism
balancing running on 2 cores.

Figure 7: Parallelism with parMap eventlog 3
(2000 transactions, 0.1% support, 50% confidence)

To further analyze the performance, I ran the tests with the same input parameters

5

on different number of cores. The graph in Figure 8 and the speedup comparison table
in Figure 9 demonstrate the respective performance. The increase in the number cores
results in better performance at first, but when running on more 4 cores, the return starts
diminishing and the effect is no longer significant.

Figure 8: Average runtime over number of cores
(2000 transactions, 0.1% support, 50% confidence)

Figure 9: Average speedup over number of cores
(2000 transactions, 0.1% support, 50% confidence)

Figure 10 shows the evenlog when running the parallelized program on 8 cores. While
the overall balancing is good, there remains some parts that run sequentially. The sequen-
tial chunk in the middle part is particularly outstanding. Since the parallel implementation
discussed above involves mapping the list in parallel and then concatenate each element
returned by the mapping, while the mapping is evaluated in parallel, the concatenation
part is done sequentially. Hence, for the aprioriGen function where there tends to be
a large number of itemsets to be concatenated, the resulting sequential process becomes
non-negligible. Therefore, in the next section, I will explore ways to further improve the
performance by making the program running on another layer of parallelism, so that the
sequential part here can be run in parallel as well.

6

Figure 10: Parallelism with parMap eventlog 4
(2000 transactions, 0.1% support, 50% confidence)

3.2 MapReduce

In addition to applying parallelisms within the Apriori algorithm, I added another layer of
parallelism so that the program will run the Apriori algorithm in parallel on top of parallel
implementation discussed in the previous section, which is essentially applying the idea
of MapReduce.

My initial attempt was to divide the transactions from the input dataset into smaller
chunks and apply the Apriori algorithm to each chunk using the parBuffer 100 rdeepseq

strategy. For the strategy to work, I also added the NFData instances for two data types
I defined. The aprioriByChunkSize function takes a parameter indicating the size of
each chunk, i.e. the number of transactions in each chunk.

newtype Itemset = Itemset (Set.Set String) deriving (Eq, Ord)

instance NFData Itemset where

rnf (Itemset i) = rnf i

data AssocRule = AssocRule (Set.Set String) (Set.Set String) Double Double deriving (Eq, Ord)

instance NFData AssocRule where

rnf (AssocRule a b s c) = rnf a `seq` rnf b `seq` rnf s `seq` rnf c

aprioriByChunkSize :: Int -> [Itemset] -> Double -> Double -> [AssocRule]

aprioriByChunkSize n transactions support confidence =

removeDup (concatMap (\c -> apriori support confidence c transactions) chunks

`using` parBuffer 100 rdeepseq)

where

chunk _ [] = []

chunk n xs = let (as,bs) = splitAt n xs in as : chunk n bs

chunks = chunk n transactions

7

The comparison table in Figure 11 shows a drastic speedup with the additional layer
of parallelism using the MapReduce method. Figure 12 is a sample eventlog for running
the MapReduce parallelism on 2 cores with chunk size 5. The balancing of the program
is significantly better than earlier, as there is essentially no more sequential part when the
program is running.

Figure 11: Performance comparison
(2000 transactions, 0.1% support, 50% confidence, chunk size 5)

Figure 12: Parallel with MapReduce eventlog

Next, I altered the chunk size to see if there is an optimal size that renders the best
performance. Figure 13 demonstrates the relations on the chunk size, core number and the
runtime. The figure infers that the best performance is achieved when the chunk size is set
to 1, regardless of the number of cores. Further, with chunk size 1, there is no noticeable
runtime difference between running on different number of cores. A potential factor that
might leads to negligible effect of chunk size is the size of the input transactions. As the
tests so far are run on 2000 transactions. To test the hypothesis, I ran more tests on a larger
dataset consisting of 9000 transactions running on 4 cores. However, as shown in Figure
14, even when running on a larger dataset, the chunk size is still optimal at size 1. Given
this observation, modify the code to eliminate the divide-into-chunk part, and simply do
a parallel mapping on each transaction.

aprioriChunk :: [Itemset] -> Double -> Double -> [AssocRule]

aprioriChunk transactions support confidence =

removeDup (concatMap (\c -> apriori support confidence [c] transactions) transactions

`using` parBuffer 100 rdeepseq)

8

Figure 13: Runtime over chunk size and core number

Figure 14: Runtime over chunk size on 4 cores
(9000 transactions, 0.1% support, 50% confidence)

Another aspect to be explored is the reason why the number of cores does not have
an effect on the runtime. Looking at the output of the program, the largest itemset is
of size 3 and there are only few of them. By the logic of the Apriori algorithm, a larger
output itemset necessarily means more rounds of iterations, which leads to longer process
time and heavier computation. Therefore, running on a larger output size might allow the
effect of core number to become more obvious. Figure 15 demonstrates the test results on a
dataset of 9000 transactions with a lower support value, so that the program will produce
more and larger outputs. The figure shows a relatively large runtime decrease from 2

cores to 3 cores, though with more than 3 cores, the runtime change seems trivial. For the
previous input parameter, there was little computation required for each transaction, and
hence the capability of each thread was not largely used up. Thus, if more computation is

9

required for each transaction in the program, the core number tends to have more impact
on the runtime.

Figure 15: Runtime over core number
(9000 transactions, 0.05% support, 50% confidence)

4 Conclusion

By applying multiple layers of parallelism using different strategies, the resulting parallel
Apriori algorithm is able to handle association rule mining more efficiently, no matter
what transactional dataset or input parameters are given. With the capabilities provided
by Haskell, the parallelism applied to the Apriori algorithm can be programmed in a few
lines of code, while producing significant improvement on the program performance.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proc. of
20th intl. conf. on vldb (pp. 487–499).

Carrie. (2018). E-commerce data. Retrieved 2021-12-22, from https://www.kaggle.com/

carrie1/ecommerce-data/home?select=data.csv

Schiessl, C. (2011). Implementation of the apriori algorithm in haskell. Retrieved 2021-12-22,
from https://gist.github.com/cs/2909095

10

https://www.kaggle.com/carrie1/ecommerce-data/home?select=data.csv
https://www.kaggle.com/carrie1/ecommerce-data/home?select=data.csv
https://gist.github.com/cs/2909095

A Usage

Parallelism on Apriori Algorithm using parMap from Control.Monad.Par:
stack exec apriori-parallel-exe <csv filename> <min support> <min confidence>

Execute the sequential implementation:
stack exec apriori-parallel-exe <csv filename> <min support> <min confidence> seq

Apply parallelism using MapReduce:
stack exec apriori-parallel-exe <csv filename> <min support> <min confidence> chunk

Specify the size of chunk to reduce to:
stack exec apriori-parallel-exe <csv filename> <min support> <min confidence> chunk <chunk size>

B Code Listing

app/Main.hs

1 module Main where

2 import Apriori (getAssocRules, getFreqItemsets, getInitFreqItemset,

3 aprioriChunk, aprioriByChunkSize,

4 getInitFreqItemsetS, getFreqItemsetsS)

5

6 import LoadData (readTableToLst)

7

8 import qualified Data.List as List

9 import System.Exit (die)

10 import System.Environment (getArgs, getProgName)

11

12

13 main :: IO ()

14 main = do

15 args <- getArgs

16 case args of

17 -- sequential

18 [fn, sp, cf, "seq"] -> do

19 let filename = fn

20 support = read sp :: Double

21 confidence = read cf :: Double

22 -- get all transactions

23 transactions <- readTableToLst filename

24 let initFreqItemset = getInitFreqItemsetS support transactions

25 freqItemsets = concat $

26 List.unfoldr (getFreqItemsetsS support transactions) initFreqItemset

27 print $ getAssocRules confidence transactions freqItemsets

28 -- parMap

29 [fn, sp, cf] -> do

30 let filename = fn

31 support = read sp :: Double

32 confidence = read cf :: Double

33 -- get all transactions

34 transactions <- readTableToLst filename

35 let initFreqItemset = getInitFreqItemset support transactions

11

36 freqItemsets = concat $

37 List.unfoldr (getFreqItemsets support transactions) initFreqItemset

38 print $ getAssocRules confidence transactions freqItemsets

39 -- mapReduce

40 [fn, sp, cf, "chunk"] -> do

41 let filename = fn

42 support = read sp :: Double

43 confidence = read cf :: Double

44 -- get all transactions

45 transactions <- readTableToLst filename

46 print $ aprioriChunk transactions support confidence

47 -- mapReduce with chunk size

48 [fn, sp, cf, "chunk", cs] -> do

49 let filename = fn

50 support = read sp :: Double

51 confidence = read cf :: Double

52 chunkSize = read cs :: Int

53 -- get all transactions

54 transactions <- readTableToLst filename

55 print $ aprioriByChunkSize chunkSize transactions support confidence

56 _ -> do

57 pn <- getProgName

58 die $ "Usage: stack exec "++pn

59 ++" <csv_filename> <min_support> <min_confidence> [seq] | [chunk] | [chunk <chunk_size>]"

src/Apriori.hs [Reference: (Schiessl, 2011)]

1 module Apriori where

2

3 import qualified Data.List as List

4 import qualified Data.Set as Set

5 import Control.Monad (guard)

6 import Control.Monad.Par (runPar, parMap)

7 import Control.DeepSeq (NFData(..))

8 import Control.Parallel.Strategies (parList, using, rdeepseq, parBuffer)

9

10 newtype Itemset = Itemset (Set.Set String) deriving (Eq, Ord)

11 instance NFData Itemset where

12 rnf (Itemset i) = rnf i

13

14 data AssocRule = AssocRule (Set.Set String) (Set.Set String) Double Double deriving (Eq, Ord)

15 instance Show AssocRule where

16 show (AssocRule a b s c) =

17 "\n" ++ show a ++ " => " ++ show b ++ " (" ++ show s ++ ", " ++ show c ++ ")"

18

19 instance NFData AssocRule where

20 rnf (AssocRule a b s c) = rnf a `seq` rnf b `seq` rnf s `seq` rnf c

21

22

23

24 getSupport :: [Itemset] -> Itemset -> Double

25 getSupport transactions (Itemset i) =

26 fromIntegral (supportCount i) / fromIntegral (length transactions)

27 where supportCount i = length $

28 filter (Set.isSubsetOf i) $ map (\(Itemset x) -> x) transactions

29

30 getConfidence :: [Itemset] -> Itemset -> Itemset -> Double

31 getConfidence transactions (Itemset a) (Itemset b) =

32 getSupport transactions (Itemset $ a `Set.union` b) / getSupport transactions (Itemset a)

33

12

34 removeDup :: Ord a => [a] -> [a]

35 removeDup l = Set.toList $ Set.fromList l

36

37 getAssocRules :: Double -> [Itemset] -> [Itemset] -> [AssocRule]

38 getAssocRules minConfidence transactions sets = do

39 Itemset is <- sets

40 subset <- Set.toList $ Set.powerSet is

41 let s = is `Set.difference` subset

42 guard $ not (Set.null s) && (s /= subset)

43 let conf = getConfidence transactions (Itemset subset) (Itemset s)

44 guard $ conf > minConfidence

45 let supp = getSupport transactions (Itemset subset)

46 rule = AssocRule subset s supp conf

47 return rule

48

49

50 ---- sequential ----

51 getInitFreqItemsetS :: Double -> [Itemset] -> [Itemset]

52 getInitFreqItemsetS minSupport transactions =

53 let initCandItemset = removeDup $

54 concatMap (\(Itemset t) -> map (Itemset . Set.singleton) $ Set.toList t) transactions

55 --- sequential

56 in filter (\cand -> getSupport transactions cand > minSupport) initCandItemset

57

58 aprioriGenS :: [Itemset] -> [Itemset]

59 aprioriGenS iss =

60 let

61 -- join step

62 selfJoin = [Itemset (a `Set.union` b)

63 | (Itemset a) <- iss, (Itemset b) <- iss, validateCandidate a b]

64 validateCandidate a b = Set.size (a `Set.difference` b) == 1

65 -- prune step

66 nonFrequentSubsets (Itemset i) = all (\s -> Itemset s `elem` iss) (properSubsets i)

67 powerSetList s = Set.toList $ Set.powerSet s

68 properSubsets s = filter (\x -> Set.size x == Set.size s - 1) (powerSetList s)

69 --- sequential

70 candItemset = filter nonFrequentSubsets selfJoin

71 in removeDup candItemset

72

73 getFreqItemsetsS :: Double -> [Itemset] -> [Itemset] -> Maybe ([Itemset], [Itemset])

74 getFreqItemsetsS _ _ [] = Nothing

75 getFreqItemsetsS minSupport transactions currFreqItemset =

76 let nextCandItemset = aprioriGenS currFreqItemset

77 --- sequential

78 nextFreqItemset = filter (\cand -> getSupport transactions cand > minSupport) nextCandItemset

79 in Just (currFreqItemset, nextFreqItemset)

80

81

82 ---- parMap ----

83 getInitFreqItemset :: Double -> [Itemset] -> [Itemset]

84 getInitFreqItemset minSupport transactions =

85 let initCandItemset = removeDup $

86 concatMap (\(Itemset t) -> map (Itemset . Set.singleton) $ Set.toList t) transactions

87 --- parMap

88 initFreqItemset = runPar $

89 parMap (\cand -> (cand, getSupport transactions cand > minSupport)) initCandItemset

90 in concat $ [[cand] | (cand, isFreq) <- initFreqItemset, isFreq]

91

92 aprioriGen :: [Itemset] -> [Itemset]

13

93 aprioriGen iss =

94 let

95 -- join step

96 selfJoin = [Itemset (a `Set.union` b)

97 | (Itemset a) <- iss, (Itemset b) <- iss, validateCandidate a b]

98 validateCandidate a b = Set.size (a `Set.difference` b) == 1

99 -- prune step

100 nonFrequentSubsets (Itemset i) = all (\s -> Itemset s `elem` iss) (properSubsets i)

101 powerSetList s = Set.toList $ Set.powerSet s

102 properSubsets s = filter (\x -> Set.size x == Set.size s - 1) (powerSetList s)

103 --- parMap

104 candItemsetLst = runPar $ parMap (\cand -> (cand, nonFrequentSubsets cand)) selfJoin

105 candItemset = concat $ [[cand] | (cand, isSubSet) <- candItemsetLst, isSubSet]

106 in removeDup candItemset

107

108 getFreqItemsets :: Double -> [Itemset] -> [Itemset] -> Maybe ([Itemset], [Itemset])

109 getFreqItemsets _ _ [] = Nothing

110 getFreqItemsets minSupport transactions currFreqItemset =

111 let nextCandItemset = aprioriGen currFreqItemset

112 --- parMap

113 nextFreqItemsetLst = runPar $

114 parMap (\cand -> (cand, getSupport transactions cand > minSupport)) nextCandItemset

115 nextFreqItemset = concat $ [[cand] | (cand, isFreq) <- nextFreqItemsetLst, isFreq]

116 in Just (currFreqItemset, nextFreqItemset)

117

118

119 --- MapReduce ----

120 apriori :: Double -> Double -> [Itemset] -> [Itemset] -> [AssocRule]

121 apriori support confidence transactions transAll =

122 let initFreqItemset = getInitFreqItemsetC support transactions transAll

123 freqItemsets = concat $ List.unfoldr (getFreqItemsets support transAll) initFreqItemset

124 in getAssocRules confidence transAll freqItemsets

125

126 getInitFreqItemsetC :: Double -> [Itemset] -> [Itemset] -> [Itemset]

127 getInitFreqItemsetC minSupport transactions transAll =

128 let initCandItemset = removeDup $

129 concatMap (\(Itemset t) -> map (Itemset . Set.singleton) $ Set.toList t) transactions

130 --- parMap

131 initFreqItemset = runPar $

132 parMap (\cand -> (cand, getSupport transAll cand > minSupport)) initCandItemset

133 in concat $ [[cand] | (cand, isFreq) <- initFreqItemset, isFreq]

134

135

136 aprioriByChunkSize :: Int -> [Itemset] -> Double -> Double -> [AssocRule]

137 aprioriByChunkSize n transactions support confidence =

138 removeDup (concatMap (\c -> apriori support confidence c transactions) chunks

139 `using` parBuffer 100 rdeepseq)

140 where

141 chunk _ [] = []

142 chunk n xs = let (as,bs) = splitAt n xs in as : chunk n bs

143 chunks = chunk n transactions

144

145 aprioriChunk :: [Itemset] -> Double -> Double -> [AssocRule]

146 aprioriChunk transactions support confidence =

147 removeDup (concatMap (\c -> apriori support confidence [c] transactions) transactions

148 `using` parBuffer 100 rdeepseq)

src/LoadData.hs

1 module LoadData where

14

2 import Apriori (Itemset(..))

3 import qualified Data.Set as Set

4 import Text.CSV (parseCSVFromFile)

5 import System.Exit (die)

6

7

8 -- read the csv file to get a list of transactions

9 readTableToLst :: FilePath -> IO [Itemset]

10 readTableToLst filename = do

11 csv_file <- parseCSVFromFile filename

12 case csv_file of

13 Right csv -> return $ getTransactions csv

14 Left err -> die $ show err

15 where

16 getItemset record = Itemset $ Set.fromList $ filter (/= "") record

17 getTransactions csv = map getItemset csv

15

	Introduction
	Apriori Algorithm
	Overview
	Haskell Implementaion

	Parallelism
	Par Monad
	MapReduce

	Conclusion
	Usage
	Code Listing

