
COMS 4995

ACC

Emily Sillars

12/22/21

Abstract

While the invention of ASCII art could be attributed in part to necessity[1], the humor
and fastidiousness of computer programmers seems to be the larger culprit. One of the earliest
examples of ASCII graphics is Leon Harmon’s and Kenneth Knowlton’s image of choreographer
Deborah Hay, created for a prank in which they hung the picture in a coworker’s office at Bell
Labs[3]. Nowadays, the genre of ASCII art continues to spark humorous, creative projects and
to evolve, most notably expanding to include the creation of ASCII animation. Setting humor
aside, the technical problem of converting an image to an ASCII representation, or the more
complex problem of converting an animation to ASCII is not only interesting, but lends itself well
to a parallel implementation. The AAC program (ASCII Animation Converter) takes a group
of images and converts them each to an ASCII graphics equivalent. The following sections in
this report aim to describe the image to ASCII conversion process, the sequential and parallel
algorithms implemented, and performance results.

1 Converting an Image to ASCII

A digital image is represented as a grid of pixels. For simplicity, let us first consider gray scale
images. A gray scale image is represented as a 2 dimensional array of pixels, one dimension for
the width of the image and one dimension for the length. Each pixel contains a numeric value
representing brightness. With a byte representation of a pixel, 256 unique levels of gray can be
represented: 0 is black, 255 is white, and the values 1-254 in between are levels of gray increasing
in brightness. Taking the definition of an image as a grid of pixels, and a pixel as a byte-sized
a numeric value, image to ASCII conversion can be modeled with a simple map from pixels to
characters.

While a bijective map (assigning a unique ASCII character to each of the 256 levels of gray)
is possible, surjective maps using “character ramps” representing a smaller range of grays are
often used. Paul Bourke’s webpage “Character representation of grey scale images” [4] outlines an
example character ramp for 70 levels of gray:

"$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,"^‘’. "

Using a 70 character ramp, image to ASCII conversion can be modeled as a surjective map from
pixels to characters, with the conversion function being

f(x)= x % 70

Converting a color image to an ASCII representation can then be separated into two steps: 1)
converting the color image to gray scale 2) converting from the gray scale representation to ASCII
using the process outlined above.

1

Figure 1: A 64 x 64 pixel gray scale image

Figure 2: A 64 x 64 character ASCII image equivalent

A digital color image in RGB format can be represented as a 3 dimensional array of pixels, one
dimension for width, one dimension for height, and one dimension for the “depth” or color channels.
One can visualize a color image then as a 3 dimensional box with a width of image width, a height
of image height, and a depth of three units for the red, blue, and green color channels. This third
dimension can be flattened by performing a function which takes a pixel’s red, green, and blue
values as input, and outputs a single gray value. Different definitions of this function exist, but a
simple one used by Lescurel on stack exchange.com [2] is

f(R,G,B) = 0.2989 * R + 0.5870 * G + 0.1140 * B

where f(R,G,B) is the corresponding gray value.

2

Figure 3: A 3D representation of an the RGB digital image

Figure 4: A 2D (flattened) grayscale equivalent of RGB image

2 Sequential Algorithm

For a single image, the steps in the algorithm are

1. read in the file

2. convert the image

3

3. print out the result

For a group of n images, this algorithm is repeated once for each of the n images .
For the conversion step, I chose to use REPA, which is a library well suited for parallel array

computation. The following code snippet using REPA displays the color to gray scale and character
ramp functions in use in the conversion process. Using computeS ensures the computation is
performed sequentially.

surjectionS :: Array D DIM3 Word8 -> Array U DIM2 Char

surjectionS pixels = computeS a

where

a = fromFunction (Z :. height :. width) toGray

(height : width : _) = reverse $ listOfShape $ extent pixels

toGray = \(Z :. i :. j) ->

let r = fromIntegral $ pixels ! (Z :. i :. j :. 0)

in let g = fromIntegral $ pixels ! (Z :. i :. j :. 1)

in let b = fromIntegral $ pixels ! (Z :. i :. j :. 2)

in ramp ‘BC.index‘ (gray (r, g, b) ‘mod‘ 70)

3 Parallel Algorithms

Parallelizing the conversion algorithm for a single image is as simple as changing computeS to
computeP.

For converting a group of images (frames in an animation), I intended to read in and convert
each image in parallel with the par monad. The first challenge I ran into was the par monad’
library’s inability to perform IO operations. It is impossible to parMap over a set of functions that
take in or return objects in the IO monad. To bypass this problem, I started reading in each of
the image files as a lazy bytestring, and then fed the unwrapped lazy bytestrings to the functions
processed by parMap. The remaining chunks of each file could then be read in in parallel by
converting from a lazy to a strict bytestring.

After implementing such an algorithm using parmap, I discovered that REPA does not support
nested parallelism. According to REPA’s documentation, “you cannot map a parallel worker func-
tion across an array and then call computeP to evaluate it”[5]. Running parmap over my set of
image-to-asci REPA computations forcesdthem to run sequentially. Adapting to this new informa-
tion, I created two alternative parallelized algorithms nicknamed parMap + REPA and parMap +
parMap.

parMap + REPA:

1. Read in files in parallel (parMap)

2. Convert one file after another, with image to ASCII step parallelized (REPA)

3. Print out the results

parMap + parMap:

1. Read in files in parallel (parMap)

2. Convert each file in parallel, with image to ASCII step parallelized (parMap)

3. Print out the results

4

4 Performance Results

I achieved approximately a 1.82 x speedup using parMap + REPA. parMap + parMap ran excep-
tionally slowly, and the sequential version consumed the least memory.

Data Sequential parMAp + REPA parMAp + parMap

Total Time 1.31s 0.72s 4.56s
Mutator Time 1.16s 0.70s 2.86s

GC Time 0.15s 0.03s 1.70s
Max Heap Size 29.0MiB 104.0MiB 470.0MiB

Table 1: Threadscope Data

I believe parMap+parMap ran slowly because there was too much overhead computing an ivar
for each pixel of the image. Next steps would be to break the image into groups of pixels, and then
parMap over these groups to see if reduced granularity improves performance. Converting from
lazy bytestrings to strict bytestrings, an expensive operation, likely contributed to the increased
memory consumption of the two parallel implemetations.

5 Conclusion

While a modest speedup was achieved , REPA’s inability to work in nested parallel settings limited
its performance improvement. For the parMap + REPA version, I am extremely interested to see
if it would be possible to replace the top level parMap with another REPA computation. Instead
of running parMap over a list of images, I could treat the list as a 2D REPA instead , effectively
turning the framess-to-ascii conversion for an animation into one giant parallel REPA computation.
This proposed method could be explored in future investigations.

References

1. https://www.geeksforgeeks.org/converting-image-ascii-image-python/

2. https://codereview.stackexchange.com/questions/263823/haskell-convert-an-image-to-
ascii-art

3. https://collections.vam.ac.uk/item/O239963/studies-in-perception-i-print-harmon-leon/

4. http://paulbourke.net/dataformats/asciiart/

5. https://hackage.haskell.org/package/repa-3.4.1.4/docs/Data-Array-Repa.html

Appendix: Program Listing

A app/Main.hs

module Main where

import Control.Monad.Par (parMap

, runPar

)

5

import qualified Data.ByteString.Lazy as BL

import Data.List (sort)

import Lib (convertIVar

, convertRepa

, convertS

, readLazyImg

)

import System.Directory (listDirectory)

import System.Environment (getArgs

, getProgName

)

import System.Exit (die)

main :: IO ()

main = do

args <- getArgs

case args of

[dir] -> do -- sequential

files <- listDirectory dir

if null $ sort files

then

die

$ "Error: "

++ dir

++ " must contain at least one png file"

else do

let converted =

(\x -> do

convertS $ concat [dir, "/", x]

)

<$> files

mapM_

(\x ->

(do

str <- x

putStrLn str

)

)

converted

[dir, "-repa-par-read"] -> do -- parallel read

files <- listDirectory dir

if null $ sort files

then

die

$ "Error: "

++ dir

++ " must contain at least one png file"

else do

6

-- read in part of each file sequentially

lazyFrames <-

rewrap

$ (\x -> BL.readFile $ concat [dir, "/", x])

<$> files

let frames = runPar $ readLazyImg ‘parMap‘ lazyFrames

-- convert files sequentially

-- with each image’s pixel conversions in parallel

let converted = convertRepa <$> frames

-- print result sequentially

mapM_ putStrLn converted

[dir, "-ivars"] -> do

files <- listDirectory dir

if null $ sort files

then

die

$ "Error: "

++ dir

++ " must contain at least one png file"

else do

-- read in part of each file sequentially

lazyFrames <-

rewrap

$ (\x -> BL.readFile $ concat [dir, "/", x])

<$> files

-- convert each file in parallel

let converted = runPar $ convertIVar ‘parMap‘ lazyFrames

-- print result sequentially

mapM_ putStrLn converted

_ -> do

pn <- getProgName

die $ "Usage: " ++ pn ++ " <directory path> <optional p flag>"

rewrap :: [IO BL.ByteString] -> IO [BL.ByteString]

rewrap fls = foldr combine (return [] :: (IO [BL.ByteString])) fls

where

combine :: IO BL.ByteString -> IO [BL.ByteString] -> IO [BL.ByteString]

combine x acc = do

thing <- x

list <- acc

return (thing : list)

B src/Lib.hs

module Lib

(convertS

, convertIVar

7

, convertRepa

, readLazyImg

) where

import Codec.Picture as J

import Codec.Picture.Repa as R

(Img(imgData)

, RGB

, convertImage

)

import Control.DeepSeq (NFData)

import Control.Monad (join)

import Control.Monad.Par (parMap

, runPar

)

import Control.Parallel.Strategies (parList

, rdeepseq

, runEval

, using

)

import Data.Array.Repa as A

hiding ((++))

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC

import qualified Data.ByteString.Lazy as BL

import Data.Functor.Identity as F

import qualified Data.List as L

import Data.List.Split (chunksOf)

import Data.Text (pack)

import Data.Text.Encoding as TSE

import Data.Text.Internal.Fusion.Size (charSize)

import Data.Typeable (typeOf)

import Data.Vector.Storable as V

(toList)

import Data.Word (Word8)

import GHC.ExecutionStack (Location(functionName))

import GHC.RTS.Flags (TickyFlags(tickyFile))

import Text.Printf (IsChar(toChar))

-- Paul Bourke’s 70 levels of gray character ramp

ramp :: B.ByteString

ramp = TSE.encodeUtf8 $ pack $ reverse

"$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\\|()1{}[]?-_+~<>i!lI;:,\"^‘\’. "

-- gray = f(R,G,B) = 0.2989 * R + 0.5870 * G + 0.1140 * B

gray :: (Double, Double, Double) -> Int

gray (r, g, b) = round $ 0.2989 * r + 0.5870 * g + 0.1140 * b

8

-- | Sequential Version

-- convert an image to ascii and return as string

-- helper for sequential implementation

convertS :: FilePath -> IO String

convertS png = do

img <- J.readImage png

case img of

(Right v) -> return bi

where

imgRGB = convertRGB8 v

w = imageWidth imgRGB

imgRepa = R.convertImage imgRGB :: Img RGB

bi = L.intercalate "\n" $ chunksOf w $ A.toList imgAsText

imgAsText = surjectionS $ imgData imgRepa

(Left err) -> return $ "Read Error: " ++ err

-- sequential image to ascii conversion using REPA

surjectionS :: Array D DIM3 Word8 -> Array U DIM2 Char

surjectionS pixels = computeS a -- :: Array D DIM2 Char -- computeS a

where

(height : width : _) = reverse $ listOfShape $ extent pixels

a = fromFunction (Z :. height :. width) toGray

toGray = \(Z :. i :. j) ->

let r = fromIntegral $ pixels ! (Z :. i :. j :. 0)

in let g = fromIntegral $ pixels ! (Z :. i :. j :. 1)

in let b = fromIntegral $ pixels ! (Z :. i :. j :. 2)

in ramp ‘BC.index‘ (gray (r, g, b) ‘mod‘ 70)

-- | parMap + REPA version

-- convert image to ascii array, then convert to string

-- top level wrapper for surjectionP

convertRepa :: Either String (Image PixelRGB8) -> String

convertRepa (Left err) = err

convertRepa (Right img) = L.intercalate "\n" $ chunksOf w $ A.toList imgAsText

where

repaImg = R.convertImage img :: Img RGB

imgAsText = surjectionP $ imgData repaImg

(_ : w : _) = reverse $ listOfShape $ extent $ imgData repaImg

-- parallel image to ascii conversion using REPA

surjectionP :: Array D DIM3 Word8 -> Array U DIM2 Char

surjectionP pixels = runIdentity $ computeP a

where

(height : width : _) = reverse $ listOfShape $ extent pixels

a = fromFunction (Z :. height :. width) toGray

toGray = \(Z :. i :. j) ->

9

let r = fromIntegral $ pixels ! (Z :. i :. j :. 0)

in let g = fromIntegral $ pixels ! (Z :. i :. j :. 1)

in let b = fromIntegral $ pixels ! (Z :. i :. j :. 2)

in ramp ‘BC.index‘ (gray (r, g, b) ‘mod‘ 70)

-- | parMap + parMap version

-- convert image to ascii array, then convert to string

-- top level wrapper for surjectionIVar

convertIVar :: BL.ByteString -> String

convertIVar png =

-- finish reading in file (convert from lazy to strict bytestring)

let img = myReadPng png

in case img of

(Right v) -> imgAsText

where

-- convert image to text

imgAsText = surjectionIVar imgRGB

-- represent each pixel with three bytes, one for R, G, and B

imgRGB = convertRGB8 v

(Left err) -> "Read Error: " ++ err

-- parallel image to ascii conversion using parmap on gray pixels

surjectionIVar :: Image PixelRGB8 -> String

surjectionIVar img =

-- separate each row of characters with a newline

L.intercalate "\n" $ chunksOf (imageWidth img) chars

where

-- convert pixels to ascii characters in parallel

chars = runPar $ toChar ‘parMap‘ V.toList pixels

toChar = \px -> ramp ‘BC.index‘ (fromIntegral px ‘mod‘ 70)

pixels = imageData grayImg

-- convert color pixels to gray pixels sequentially

grayImg = pixelMap toGray img

toGray :: PixelRGB8 -> Pixel8

toGray (PixelRGB8 r g b) =

round

$ 0.2989

* fromIntegral r

+ 0.5870

* fromIntegral g

+ 0.1140

* fromIntegral b

-- | Parallel Reading Helper Functions

-- Convert Lazy ByteString to Image

readLazyImg :: BL.ByteString -> Either String (Image PixelRGB8)

readLazyImg png =

10

-- finish reading in file (convert from lazy to strict bytestring)

let img = myReadPng png

in case img of

-- convert file to Juicy Pixel image

(Right v) -> Right (convertRGB8 v)

(Left err) -> Left ("Read Error: " ++ err)

myReadPng :: BL.ByteString -> Either String DynamicImage

myReadPng = myWithImageDecoder J.decodeImage

myWithImageDecoder

:: (NFData a)

=> (B.ByteString -> Either String a)

-> BL.ByteString

-> Either String a

myWithImageDecoder decoder path = decoder $ BL.toStrict path

11

	Converting an Image to ASCII
	Sequential Algorithm
	Parallel Algorithms
	Performance Results
	Conclusion
	app/Main.hs
	src/Lib.hs

