
Parallel Data Compression Using gzip

Annie Feng Song (afs2185)
afs2185@columbia.edu

Introduction
gzip is a file format (and also an application) that is widely used for file compression and
decompression. It uses the DEFLATE compression algorithm using the Lempel-Ziv coding. Most
commonly, gzip is used by web protocols (e.g. HTTP compression) due to the fact that it can
be implemented as a streaming algorithm.1

Implementations
Perhaps the most well known implementation of the gzip compression algorithm is the zlib
library written in C.2 There is also a parallelized version of the algorithm, pigz, written in C.3

In terms of haskell implementations, I have found a version that is essentially a wrapper around
the zlib library.4 I have also come across a pure-haskell implementation of the decompression
using gzip.5

Project Goals
My goal in this project is to implement a parallelized zlib compression application in Haskell.
The parallelized implementation will mimic that of pigz (which essentially divides the file to be
compressed into blocks and compresses the blocks separately). The files compressed using my
implementation should do so in a reasonable amount of time and should be able to be
decompressed by gzip. I will also conduct correctness and performance testing using files of
various sizes and include them in my final presentation.

Project Milestones
Due to limited time, I may not be able to finish the project as I’ve outlined in the previous
section. However, here’s the general milestones that I intend to achieve sequentially.

5 https://github.com/GaloisInc/pure-zlib
4 https://hackage.haskell.org/package/zlib
3 https://zlib.net/pigz/
2 https://github.com/madler/zlib
1 https://en.wikipedia.org/wiki/Gzip

mailto:afs2185@columbia.edu


1. Create basic program interface and achieve compression using the Haskell zlib library
2. Replace compression component with my implementation of the sequential DEFLATE

algorithm.
3. Parallelize the work by referring to pigz and splitting the files into blocks.
4. Perform benchmark testing and record results.

The test files that I use throughout the project will be included in the final deliverable.


