
COMS 4995 Project Proposal: Word Search

Anshit Shirish Chaudhari (ac4772)
Soamya Agrawal (sa3881)

Problem Statement

Finding word in a matrix is a common game that humans love. The aim of our project is to build a
parallel algorithm in Haskell to check if a word is present in the grid of characters. We say a word exists
if it can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally
or vertically neighboring (similar to snaking puzzle). The same letter cell cannot be used more than
once. Without the loss of generality, we restrict the input grid and the query word to contain only
lowercase English letters.

Example: In the following grid, if the user queries the existence of the word “see”, our algorithm should
output true. Similarly, a query for “haskell” should output false.

Implementation

We wrote the following Python code to solve the problem sequentially. board is the grid and word is
the query that the user wants to run.

Parallelization

We see two avenues for parallelizing the above sequential algorithm.
- In the function query_grid, we could parallelize the calls made to attempt_match so that

computation for each cell matching the first letter of the word will be done in parallel
- In the function attempt_match, we could parallelize the four calls made to itself

(attempt_match)

We also aim to explore different parallelization strategies to address the challenge of exponential
computation paths resulting from the graph based algorithm above. We will experiment with different
numbers of cores and strategies to analyse the runtime on threadscope.

Stretch Goals
- Output the path in case the query word exists in the grid
- Output all the dictionary words present in the grid (like Boggle Solver)

References
- https://leetcode.com/problems/word-search/
- https://leetcode.com/problems/word-search-ii/

https://leetcode.com/problems/word-search/
https://leetcode.com/problems/word-search-ii/

