COMS 4995 PFP Project Proposal: ParRE

Eumin Hong (eh2890) and Christopher Yoon (c¢jy2129)

November 23, 2021

Project Objective

We aim to implement parallel regular expression matching via a data-parallel NFA implementation. We
summarize our deliverables as followed:

1. Implementation of a module for regex parsing, NFA generation, sequential and parallel matching.
2. Rigorous evaluations of parallel matching in large text files.

3. Performance evaluation and comparisons with various K cores and sequential implementation (K = 1),
as well as other Haskell implementations if time left.

4. (If time left) Implementation of real-world regex applications.

5. (If a lot of time left) Lower bound computation of number of states needed for computationally equiv-
alent DFA from NFA with n states.

To clarify: We are not trying to find a needle in a haystack, but trying to determine if the whole text
matches a regex pattern. As a crude example, we would check if a 1 GB long string of ”a ... b ...c¢” matches
the regex R = ab*c*.

Background

A regular expression (regex) is a search pattern that can be recognized with a finite state machine (FSM).
Specifically, the underlying FSM for regex patterns is a nondeterministic finite automata (NFA). Formally, an
NFA is a five-tuple (Q, 3, qo, 6, F') where @ is the finite set of states, ¥ is a finite alphabet, § : @ x X, — P(Q)
is the transition function (where ¥, = X U {e}), ¢o € Q is the start state, and F C Q is the set of accept
states (Sipser).

To check if a string w = wowy . .. wi_1 satisfies a regex pattern R, w can be run on the corresponding NFA
N with the initial state gg. Then, for every character w; of w, the transition function is performed with the
current state ¢; and the current character w;. After performing the transition function 6(g;, w;), the NFA
follows all possible resulting states in parallel. After reading the entire string w, if at least one instance of
N is in a state ¢ € F', then N accepts w.

Instead of having N branch with each possible next state, the set of reachable states S; can be recorded to
achieve a simulation of N that does not branch. This approach has roots in the NFA to DFA (deterministic fi-
nite automata) conversion algorithm from Sipser’s “Theory of Computation.” Upon initialization, Sy = {qo}
For each character w;, N updates the set of reachable states according to the equation S;11 = quSi 5(q,w;).
After reading the whole string w, if Sy N F # (), N accepts w (in other words, there is some state g € Sy, that
is an accept state). The worst-case runtime for such implementation of an NFA with n states on a string w
(where k = |w|) is O(nk).

Approach

Despite their sequential nature, NFAs can be partially parallelized. First, partition the input string w into K
chunks (or substrings) of similar length, where C; is chunk ¢ and w = C; ... Ck. Additionally, the transition
function § can be generalized to the transition lookup table T; : S; — S;41, which takes in the set of
reachable states S; and computes the next set of reachable states S;;; with the input w;. For each chunk
Cp = wj...wj, the overall transition lookup table T;_,; : S; — S;41 can be computed, which effectively
merges the transition lookup tables 75, ..., T} into a single transition lookup table T;_,; that takes in the set
of reachable states S; and produces the set of reachable states S;;1 after all characters w;...w; in chunk
Cy.

These K transition lookup tables T, ., ... T;, - can be computed in parallel. Then, the initial set of
reachable states Sy = {qo} can be passed through all K transition lookup tables in order. This operation
would result in the final set of reachable states Sj. If intersection of Sj and the set of accept states F' is
non-trivial, then there exists an accept state that is reachable from gg, and N would accept w. The worst-case
runtime for one chunk of this implementation of an NFA with n states on a string w (where k = |w|) that
is split into K chunks is O("?k) With at least K cores, the computation on each chunk can be parallelized,
and when n < K, the runtime of the parallelized version of this algorithm outperforms the sequential version
(when K =1).

Rough Outline of Algorithm

We summarize our approach with the following algorithm:

e Convert regex R to NFA N with n states (where n is bounded above by some integer for reasonable
runtimes)

e Given K cores, split input string w into K chunks C1,...,Ck.
e For every chunk C), = w, ... wy,

a. Run transition function § on each character ws in chunk C,, for every state ¢ € Q) to generate
transition lookup table Ts.

b. Combine all transition lookup tables T}, ..., T} to generate transition lookup table T;_, ;.

e Pass Sy = {qo} through each of the K transition lookup tables T; _,;. for chunk C,, to obtain the final
set of reachable states Sk

e Compute the intersection of Si and the set of accept states F' to determine if N accepts w.

References

[1] Gabriella Gonzalez. Regular expressions implemented in haskell, 2020.

[2] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-parallel finite-state machines. SIG-
PLAN Not., 49(4):529-542, feb 2014.

[3] Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third
edition, 2013.

