
Monads

Stephen A. Edwards

Columbia University

Fall 2021

Motivating Example: lookup3

The Monad Type Class
The Maybe Monad
do Blocks
The Either Monad
Monad Laws

The List Monad
List Comprehensions as a Monad

The MonadPlus Type Class and guard

The Writer Monad

Some Monadic Functions: liftM, ap, join, filterM, foldM, mapM, sequence

Functions as Monads

The State Monad
An Interpreter for a Simple Imperative Language

Motivating Example: Chasing References in a Dictionary
In Data.Map, lookup :: Ord k => k -> Map k a -> Maybe a

Say we want a function that uses a key to look up a value, then treat that
value as another key to look up a third key, which we look up and return, e.g.,

lookup3 :: Ord k => k -> Map.Map k k -> Maybe k

Prelude> import qualified Data.Map.Strict as Map
Prelude Map> myMap = Map.fromList [("One","Two"),("Two","Three"),
Prelude Map| ("Three","Winner")]
Prelude Map> Map.lookup "One" myMap
Just "Two"
Prelude Map> Map.lookup "Two" myMap
Just "Three"
Prelude Map> Map.lookup "Three" myMap
Just "Winner"

A First Attempt

lookup3 :: Ord k => k -> Map.Map k k -> Maybe k −− First try
lookup3 k1 m = case Map.lookup k1 m of

 Nothing -> Nothing
 Just k2 -> case Map.lookup k2 m of
 Nothing -> Nothing
 Just k3 -> Map.lookup k3 m

Too much repeated code, but it works.

*Main Map> lookup3 "Three" myMap
Nothing

*Main Map> lookup3 "Two" myMap
Nothing

*Main Map> lookup3 "One" myMap
Just "Winner"

What’s the Repeated Pattern Here?
Nothing -> Nothing
Just k2 -> case Map.lookup k2 m of ...

“Pattern match on a Maybe. Nothing returns Nothing, otherwise, strip out
the payload from the Just and use it as an argument to a lookup lookup.”

lookup3 :: Ord k => k -> Map.Map k k -> Maybe k −− Second try
lookup3 k1 m = (helper . helper . helper) (Just k1)

 where helper Nothing = Nothing
 helper (Just k) = Map.lookup k m

This looks a job for a Functor or Applicative Functor...

class Functor f where
 fmap :: (a -> b) -> f a -> f b −− Apply function to data in context
class Functor f => Applicative f where

 (<*>) :: f (a -> b) -> f a -> f b −− Apply a function in a context

..but these don’t fit because our steps take a key and return a key in context.

Even Better: An “ifJust” Function

ifJust :: Maybe k -> (k -> Maybe k) -> Maybe k
ifJust Nothing _ = Nothing −− Failure: nothing more to do
ifJust (Just k) f = f k −− Success: pass k to the function

lookup3 :: Ord k => k -> Map.Map k k -> Maybe k
lookup3 k1 m = ifJust (Map.lookup k1 m)

 (\k2 -> ifJust (Map.lookup k2 m)
 (\k3 -> Map.lookup k3 m))

It’s cleaner to write ifJust as an infix operator:

lookup3 :: Ord k => k -> Map.Map k k -> Maybe k
lookup3 k1 m = Map.lookup k1 m ̀ ifJust`

 \k2 -> Map.lookup k2 m ̀ ifJust`
 \k3 -> Map.lookup k3 m

The Monad Type Class: It’s All About That Bind

infixl 1 >>=
class Applicative m => Monad m where

 (>>=) :: m a -> (a -> m b) -> m b −− “Bind”
 return :: a -> m a −− Wrap a result in the Monad

Bind, >>=, is the operator missing from the Functor and Applicative Functor
type classes. It allows chaining context-producing functions

pure :: b -> f b −− Put value in context
fmap :: (a -> b) -> f a -> f b −− Apply function in context
(<*>) :: f (a -> b) -> f a -> f b −− Function itself is in context
">>=" :: (a -> f b) -> f a -> f b −− Apply a context-producing func.

Actually, Monad is a little bigger

infixl 1 >> >>=
class Monad m where

 −− The bind operator: apply the result in a Monad to a Monad producer
 (>>=) :: m a -> (a -> m b) -> m b

 −− Encapsulate a value in the Monad
 return :: a -> m a

 −− Like >>= but discard the result; often m () -> m b -> m b
 (>>) :: m a -> m b -> m b
 x >> y = x >>= _ -> y −− The default, which usually suffices

 −− Internal: added by the compiler to handle failed pattern matches
 fail :: String -> m a
 fail msg = error msg

Maybe is a Monad

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b
 fail :: String -> m a

instance Monad Maybe where −− Standard Prelude defintion
 return x = Just x −− Wrap in a Just

 Just x >>= f = f x −− Our “ifjust” function
 Nothing >>= _ = Nothing −− “computation failed”

 fail _ = Nothing −− fail quietly

The Maybe Monad in Action
Prelude> :t return "what?"
return "what?" :: Monad m => m [Char]

Prelude> return "what?" :: Maybe String
Just "what?"

Prelude> Just 9 >>= \x -> return (x*10)
Just 90

Prelude> Just 9 >>= \x -> return (x*10) >>= \y -> return (y+5)
Just 95

Prelude> Just 9 >>= \x -> Nothing >>= \y -> return (x+5)
Nothing

Prelude> Just 9 >> return 8 >>= \y -> return (y*10)
Just 80

Prelude> Just 9 >>= _ -> fail "darn" >>= \x -> return (x*10)
Nothing

lookup3 using Monads
instance Monad Maybe where

 return x = Just x

 Just x >>= f = f x −− Apply f to last (successful) result
 Nothing >>= _ = Nothing −− Give up

lookup3 :: Ord k => k -> Map.Map k k -> Maybe k
lookup3 k1 m = Map.lookup k1 m >>=

 \k2 -> Map.lookup k2 m >>=
 \k3 -> Map.lookup k3 m

Or, equivalently,

lookup3 :: Ord k => k -> Map.Map k k -> Maybe k
lookup3 k1 m = Map.lookup k1 m >>= \k2 ->

 Map.lookup k2 m >>= \k3 ->
 Map.lookup k3 m

Monads and the do Keyword: Not Just For I/O

Monads are so useful, Haskell provides do notation to code them succintly:

lookup3 :: Ord k =>
 k -> Map.Map k k -> Maybe k

lookup3 k1 m = do
 k2 <- Map.lookup k1 m
 k3 <- Map.lookup k2 m
 Map.lookup k3 m

lookup3 :: Ord k =>
 k -> Map.Map k k -> Maybe k

lookup3 k1 m =
 Map.lookup k1 m >>= \k2 ->
 Map.lookup k2 m >>= \k3 ->
 Map.lookup k3 m

These are semantically identical. do inserts the >>=’s and lambdas.

Note: each lambda’s argument moves to the left of the expression

k2 <- Map.lookup k1 m Map.lookup k1 m >>= \k2 ->

Like an Applicative Functor
Prelude> (+) <$> Just 5 <*> Just 3
Just 8
Prelude> do
Prelude| x <- Just (5 :: Int)
Prelude| y <- return 3
Prelude| return (x + y)
Just 8
Prelude> :t it
it :: Maybe Int

The Monad’s type may change;
“Nothing” halts and forces Maybe
Prelude> do
Prelude| x <- return 5
Prelude| y <- return "ha!"
Prelude| Nothing
Prelude| return x
Nothing

fail is called when a pattern match fails
Prelude> do
Prelude| (x:xs) <- Just "Hello"
Prelude| return x
Just 'H'
Prelude> :t it
it :: Maybe Char

Prelude> do
Prelude| (x:xs) <- Just []
Prelude| return x
Nothing

Like Maybe, Either is a Monad

data Either a b = Left a | Right b −− Data.Either

instance Monad (Either e) where
 return x = Right x

 Right x >>= f = f x −− Right: keep the computation going
 Left err >>= _ = Left err −− Left: something went wrong

Prelude> do
Prelude| x <- Right "Hello"
Prelude| y <- return " World"
Prelude| return $ x ++ y
Right "Hello World"

Prelude> do
Prelude| Right "Hello"
Prelude| x <- Left "failed"
Prelude| y <- Right $ x ++ "darn"
Prelude| return y
Left "failed"

Monad Laws

Left identity: applying a wrapped argument with >>= just applies the function

 return x >>= f = f x

Right identity: using >>= to unwrap then return to wrap does nothing

 m >>= return = m

Associative: applying g after applying f is like applying f composed with g

 (m >>= f) >>= g = m >>= (\x -> f x >>= g)

The List Monad: “Nondeterministic Computation”
Intuition: lists represent all possible results

instance Monad [] where
 return x = [x] −− Exactly one result
 xs >>= f = concat (map f xs) −− Collect all possible results from f
 fail _ = [] −− Error: “no possible result”

Prelude> [10,20,30] >>= \x -> [x-3, x, x+3]
[7,10,13,17,20,23,27,30,33]

“If we start with 10, 20, or 30, then either subtract 3, do nothing, or add 3, we
will get 7 or 10 or 13 or 17 or ..., or 33”

[10,20,30] >>= \x -> [x-3, x, x+3]
 = concat (map (\x -> [x-3, x, x+3]) [10,20,30])
 = concat [[7,10,13],[17,20,23],[27,30,33]]
 = [7,10,13,17,20,23,27,30,33]

The List Monad

Everything needs to produce a list, but the lists may be of different types:

Prelude> [1,2] >>= \x -> ['a','b'] >>= \c -> [(x,c)]
[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

This works because -> is at a lower level of precedence than >>=

 [1,2] >>= \x -> ['a','b'] >>= \c -> [(x,c)]
= [1,2] >>= (\x -> (['a','b'] >>= (\c -> [(x,c)])))
= [1,2] >>= (\x -> (concat (map (\c -> [(x,c)]) ['a','b'])))
= [1,2] >>= (\x -> [(x,'a'),(x,'b')])
= concat (map (\x -> [(x,'a'),(x,'b')]) [1,2])
= concat [[(1,'a'),(1,'b')],[(2,'a'),(2,'b')]]
= [(1,'a'),(1,'b'),(2,'a'),(2,'b')]

The List Monad, do Notation, and List Comprehensions

[1,2] >>= \x -> ['a','b'] >>= \c -> return (x,c)

[1,2] >>= \x ->
 ['a','b'] >>= \c ->
 return (x,c)

do x <- [1,2] −− Send 1 and 2 to the function that takes x and
 c <- ['a','b'] −− sends ’a’ and ’b’ to the function that takes c and
 return (x, c) −− wraps the pair (x, c)

[(x,c) | x <- [1,2], c <- ['a','b']]

each produce

[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

class Monad m => MonadPlus m where −− In Control.Monad
 mzero :: m a −− “Fail,” like Monoid’s mempty
 mplus :: m a -> m a -> m a −− “Alternative,” like Monoid’s mappend

instance MonadPlus [] where
 mzero = []
 mplus = (++)

guard :: MonadPlus m => Bool -> m ()
guard True = return () −− In whatever Monad you’re using
guard False = mzero −− “Empty” value in the Monad

Prelude Control.Monad> guard True :: [()]
[()]
Prelude Control.Monad> guard False :: [()]
[]
Prelude Control.Monad> guard True :: Maybe ()
Just ()
Prelude Control.Monad> guard False :: Maybe ()
Nothing

Using Control.Monad.guard as a filter

guard uses mzero to terminate a MonadPlus computation (e.g., Maybe, [], IO)

It either succeeds and returns () or fails. We never care about (), so use >>

[1..50] >>= \x ->
 guard (x ̀ rem` 7 == 0) >> −− Discard any returned ()
 return x

do x <- [1..50]
 guard (x ̀ rem` 7 == 0) −− No <- makes for an implicit >>
 return x

[x | x <- [1..50], x ̀ rem` 7 == 0]

each produce

[7,14,21,28,35,42,49]

The Control.Monad.Writer Monad

For computations that return a value and accumulate a result in a Monoid,
e.g., logging or code generation. Just a wrapper around a (value, log) pair

In Control.Monad.Writer,

newtype Writer w a = Writer { runWriter :: (a, w) }

instance Monoid w => Monad (Writer w) where
 return x = Writer (x, mempty) −− Append nothing
 Writer (x, l) >>= f = let Writer (y, l') = f x in
 Writer (y, l ̀ mappend` l') −− Append to log

a is the result value w is the accumulating log Monoid (e.g., a list)

runWriter extracts the (value, log) pair from a Writer computation

The Writer Monad in Action

import Control.Monad.Writer

logEx :: Int -> Writer [String] Int −− Type of log, result
logEx a = do

 tell ["logEx " ++ show a] −− Just log
 b <- return 42 −− No log
 tell ["b = " ++ show a]
 c <- writer (a + b + 10, ["compute c"]) −− Value and log
 tell ["c = " ++ show c]
 return c

*Main> runWriter (logEx 100)
(152,["logEx 100","b = 100","compute c","c = 152"])

Verbose GCD with the Writer
*Main> mapM_ putStrLn $ snd $ runWriter $ logGCD 9 3
logGCD 9 3
a > b
logGCD 6 9
a < b
logGCD 6 3
a > b
logGCD 3 6
a < b
logGCD 3 3
finished

import Control.Monad.Writer

logGCD :: Int -> Int -> Writer [String] Int
logGCD a b = do

 tell ["logGCD " ++ show a ++ " " ++ show b]
 if a == b then writer (a, ["finished"])
 else if a < b then do
 tell ["a < b"]
 logGCD a (b - a)
 else do
 tell ["a > b"]
 logGCD (a - b) a

Control.Monad.{liftM, ap}: Monads as Functors
fmap :: Functor f => (a -> b) -> f a -> f b −− a.k.a. <$>
(<*>) :: Applicative f => f (a -> b) -> f a -> f b −− “apply”

In Monad-land, these have alternative names

liftM :: Monad m => (a -> b) -> m a -> m b
ap :: Monad m => m (a -> b) -> m a -> m b

and can be implemented with >>= (or, equivalently, do notation)

liftM f m = do x <- m −− Get the argument from inside m
 return (f x) −− Apply the argument to the function

ap mf m = do f <- mf −− Get the function from inside mf
 x <- m −− Get the argument from inside m
 return (f x) −− Apply the argument to the function

Operations in a do block are ordered: ap evaluates its arguments left-to-right

liftM and ap In Action
liftM :: Monad m => (a -> b) -> m a -> m b
ap :: Monad m => m (a -> b) -> m a -> m b

Prelude> import Control.Monad
Prelude Control.Monad> liftM (map Data.Char.toUpper) getLine
hello
"HELLO"

Evaluate (+10) 42, but keep a log:

Prelude> :set prompt "> "
> :set prompt-cont "| "
> import Control.Monad.Writer
> :{
| runWriter $
| ap (writer ((+10), ["first"])) (writer (42, ["second"]))
| :}
(52,["first","second"])

Lots of Lifting: Applying two- and three-argument functions
In Control.Applicative, applying a normal function to Applicative arguments:
liftA2 ::

 Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA3 ::

 Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d

In Control.Monad,
liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
liftM3 :: Monad m => (a -> b -> c -> d) -> m a -> m b -> m c -> m d

Example: lift the pairing operator (,) to the Maybe Monad:

Prelude Control.Monad> liftM2 (,) (Just 'a') (Just 'b')
Just ('a','b')
Prelude Control.Monad> liftM2 (,) Nothing (Just 'b')
Nothing

join: Unwrapping a Wrapped Monad/Combining Objects
join :: Monad m => m (m a) -> m a −− in Control.Monad
join mm = do m <- mm −− Remove the outer Monad; get the inner one

 m −− Pass it back verbatim (i.e., without wrapping it)

join is boring on a Monad like Maybe, where it
merely strips off a “Just”

Prelude Control.Monad> join (Just (Just 3))
Just 3

For Monads that hold multiple objects, join lives up
to its name and performs some sort of concatenation

> join ["Hello", " Monadic", " World!"]
"Hello Monadic World!"

join (liftM f m) is the same as m >>= f

“Apply f to every object in m and collect the results in the same Monad”

sequence: “Execute” a List of Actions in Monad-Land

Change a list of Monad-wrapped objects into a Monad-wrapped list of objects

sequence :: [m a] -> m [a]
sequence_ :: [m a] -> m ()

Prelude> sequence [print 1, print 2, print 3]
1
2
3
[(),(),()]
Prelude> sequence_ [putStrLn "Hello", putStrLn "World"]
Hello
World

Works more generally on Traversable types, not just lists

mapM: Map Over a List in Monad-Land
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM_ :: Monad m => (a -> m b) -> [a] -> m () −− Discard result

Add 10 to each list element and log having seen it:

> p10 x = writer (x+10, ["saw " ++ show x]) :: Writer [String] Int
> runWriter $ mapM p10 [1..3]
([11,12,13],["saw 1","saw 2","saw 3"])

Printing the elements of a list is my favorite use of mapM_:

> mapM_ print ([1..3] :: [Int])
1
2
3

Works more generally on Traversable types, not just lists

Control.Monad.foldM: Left-Fold a List in Monad-Land
foldl :: (a -> b -> a) -> a -> [b] -> a

In foldM, the folding function operates and returns a result in a Monad:

foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a

foldM f a1 [x1, x2, ..., xm] = do a2 <- f a1 x1
 a3 <- f a2 x2
 ...
 f am xm

Example: Sum a list of numbers and report progress

> runWriter $ foldM (\a x -> writer (a+x, [(x,a)])) 0 [1..4]
(10,[(1,0),(2,1),(3,3),(4,6)])

“Add value x to accumulated result a; log x and a”

\a x -> writer (a+x, [(x,a)])

Control.Monad.filterM: Filter a List in Monad-land
filter :: (a -> Bool) -> [a] -> [a]
filter p = foldr (\x acc -> if p x then x : acc else acc) []

filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
filterM p = foldr (\x -> liftM2 (\k -> if k then (x:)

 else id) (p x)) (return [])

filterM in action: preserve small list elements; log progress

isSmall :: Int -> Writer [String] Bool
isSmall x | x < 4 = writer (True, ["keep " ++ show x])

 | otherwise = writer (False, ["reject " ++ show x])

> fst $ runWriter $ filterM isSmall [9,1,5,2,10,3]
[1,2,3]
> snd $ runWriter $ filterM isSmall [9,1,5,2,10,3]
["reject 9","keep 1","reject 5","keep 2","reject 10","keep 3"]

An Aside: Computing the Powerset of a List

For a list [x1,x2, . . .], the answer consists of two kinds of lists:[
[x1,x2, . . .], . . . , [x1]︸ ︷︷ ︸

start with x1

, [x2,x3, . . .], . . . , []︸ ︷︷ ︸
do not start with x1

]

powerset :: [a] -> [[a]]
powerset [] = [[]] −− Tricky base case: 2; = {;}
powerset (x:xs) = map (x:) (powerset xs) ++ powerset xs

*Main> powerset "abc"
["abc","ab","ac","a","bc","b","c",""]

The List Monad and Powersets
powerset (x:xs) = map (x:) (powerset xs) ++ powerset xs

Let’s perform this step (i.e., possibly prepending x and combining) using the
list Monad. Recall liftM2 applies Monadic arguments to a two-input function:

liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c

So, for example, if a = Bool, b & c = [Char], and m is a list,

listM2 :: (Bool -> [Char] -> [Char]) -> [Bool] -> [[Char]] ->
 [[Char]]

> liftM2 (\k -> if k then ('a':) else id) [True, False] ["bc", "d"]
["abc","ad","bc","d"]

liftM2 makes the function “nondeterministic” by applying the function with
every Bool in the first argument, i.e., both k = True (include ’a’) and k = False
(do not include ’a’), to every string in the second argument (["bc","d"])

filterM Computes a Powerset: Like a Haiku, but shorter

foldr f z [x1,x2,..,xn] = f x1 (f x2 (... (f xn z) ...))

filterM p = foldr (\x -> liftM2 (\k -> if k then (x:)
 else id) (p x)) (return [])
filterM p [x1,x2,..xn] =

 liftM2 (\k -> if k then (x1:) else id) (p x1)
 (liftM2 (\k -> if k then (x2:) else id) (p x2)
 ..
 (liftM2 (\k -> if k then (xn:) else id) (p xn) (return [])) ..)

If we let p _ = [True, False], this chooses to prepend x1 or not to the result
of prepending x2 or not to ... to return [] = [[]]

Prelude> filterM (_ -> [True, False]) "abc"
["abc","ab","ac","a","bc","b","c",""]

Functions as Monads
Much like functions are applicative functors, functions are Monads that apply
the same argument argument to all their constituent functions

instance Monad ((->) r) where
 return x = _ -> x −− Just produce x
 h >>= f = \w -> f (h w) w −− Apply w to h and f

import Data.Char

isIDChar :: Char -> Bool −− ((->) Char) is the Monad
isIDChar = do

 l <- isLetter −− The Char argument
 n <- isDigit −− is applied to
 underscore <- (=='_') −− all three of these functions
 return $ l || n || underscore −− before their results are ORed

*Main> map isIDChar "12 aB_"
[True,True,False,True,True,True]

The State Monad: Modeling Computations with Side-Effects
The Writer Monad can only add to a state, not observe it. The State Monad
addresses this by passing a state to each operation. In Control.Monad.State,

newtype State s a = State { runState :: s -> (a, s) }

instance Monad (State s) where
 return x = State $ \s -> (x, s)
 State h >>= f = State $ \s -> let (a, s') = h s −− First step
 State g = f a −− Pass result
 in g s' −− Second step

get = State $ \s -> (s, s) −− Make the state the result
put s = State $ _ -> ((), s) −− Set the state
modify f = State $ \s -> ((), f s) −− Apply a state update function

State is not a state; it more resembles a state machine’s next state function

a is the return value s is actually a state

Example: An Interpreter for a Simple Imperative Language
import qualified Data.Map as Map
type Store = Map.Map String Int −− Value of each variable

−− Representation of a program (an AST)
data Expr = Lit Int −− Numeric literal: 42

 | Add Expr Expr −− Addition: 1 + 3
 | Var String −− Variable reference: a
 | Asn String Expr −− Variable assignment: a = 3 + 1
 | Seq [Expr] −− Sequence of expressions: a = 3; b = 4;

p :: Expr −− Example program:
p = Seq [Asn "a" (Lit 3) −− a = 3;

 , Asn "b" (Add (Var "a") (Lit 1)) −− b = a + 1;
 , Add (Add (Var "a") bpp) −− a + (b = b + 1) + b;
 (Var "b")]
 where bpp = Asn "b" (Add (Var "b") (Lit 1))

Example: The Eval Function Taking a Store

eval :: Expr -> Store -> (Int, Store)
eval (Lit n) s = (n, s) −− Store unchanged
eval (Add e1 e2) s = let (n1, s') = eval e1 s

 (n2, s'') = eval e2 s'−− Sees eval e1
 in (n1 + n2, s'') −− Sees eval e2
eval (Var v) s =

 case Map.lookup v s of −− Look up v
 Just n -> (n, s)
 Nothing -> error $ v ++ " undefined"

eval (Asn v e) s = let (n, s') = eval e s
 in (n, Map.insert v n s') −− Sees eval e

eval (Seq es) s = foldl (\(_, ss) e -> eval e ss) (0, s) es

The fussy part here is “threading” the state through the computations

Example: The Eval Function in Uncurried Form

eval :: Expr -> (Store -> (Int, Store))
eval (Lit n) = \s -> (n, s) −− Store unchanged
eval (Add e1 e2) = \s -> let (n1, s') = eval e1 s

 (n2, s'') = eval e2 s'−− Sees eval e1
 in (n1 + n2, s'') −− Sees eval e2

eval (Var v) = \s -> −− Get the store
 case Map.lookup v s of −− Look up v
 Just n -> (n, s)
 Nothing -> error $ v ++ " undefined"

eval (Asn v e) = \s -> let (n, s') = eval e s
 in (n, Map.insert v n s') −− Sees eval e

eval (Seq es) = \s -> foldl (\(_, ss) e -> eval e ss) (0, s) es

The parentheses around Store -> (Int, Store) are unnecessary

Example: The Eval Function Using the State Monad

eval :: Expr -> State Store Int
eval (Lit n) = return n −− Store unchanged
eval (Add e1 e2) = do n1 <- eval e1

 n2 <- eval e2 −− Sees eval e1
 return $ n1 + n2 −− Sees eval e2
eval (Var v) = do s <- get −− Get the store

 case Map.lookup v s of −− Look up v
 Just n -> return n
 Nothing -> error $ v ++ " undefined"

eval (Asn v e) = do n <- eval e
 modify $ Map.insert v n −− Sees eval e
 return n −− Assigned value
eval (Seq es) = foldM (_ e -> eval e) 0 es −− Ignore value

The >>= operator threads the state through the computation

The Eval Function in Action: runState, evalState, and execState

a = 3;
b = a + 1;
a + (b = b + 1) + b

*Main> :t runState (eval p) Map.empty
runState (eval p) Map.empty :: (Int, Store) −− (Result, State)

*Main> :t evalState (eval p) Map.empty
evalState (eval p) Map.empty :: Int −− Result only
*Main> evalState (eval p) Map.empty
13

*Main> :t execState (eval p) Map.empty
execState (eval p) Map.empty :: Store −− State only
*Main> Map.toList $ execState (eval p) Map.empty
[("a",3),("b",5)]

Harnessing Monads
data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving Show

A function that works in a Monad can harness any Monad:

mapTreeM :: Monad m => (a -> m b) -> Tree a -> m (Tree b)
mapTreeM f (Leaf x) = do x' <- f x

 return $ Leaf x'
mapTreeM f (Branch l r) = do l' <- mapTreeM f l

 r' <- mapTreeM f r
 return $ Branch l' r'

toList :: Tree a -> [a]
toList t = execWriter $ mapTreeM (\x -> tell [x]) t −− Log each leaf

foldTree :: (a -> b -> b) -> b -> Tree a -> b
foldTree f s0 t = execState (mapTreeM (\x -> modify (f x)) t) s0

sumTree :: Num a => Tree a -> a
sumTree t = foldTree (+) 0 t −− Accumulate values using stateful fold

Harnessing Monads

*Main> simpleTree = Branch (Leaf (1 :: Int)) (Leaf 2)

*Main> toList simpleTree
[1,2]

*Main> sumTree simpleTree
3

*Main> mapTreeM (\x -> Just (x + 10)) simpleTree
Just (Branch (Leaf 11) (Leaf 12))

*Main> mapTreeM print simpleTree
1
2

*Main> mapTreeM (\x -> [x, x+10]) simpleTree
[Branch (Leaf 1) (Leaf 2),

 Branch (Leaf 1) (Leaf 12),
 Branch (Leaf 11) (Leaf 2),
 Branch (Leaf 11) (Leaf 12)]

	Motivating Example: lookup3
	The Monad Type Class
	The Maybe Monad
	do Blocks
	The Either Monad
	Monad Laws

	The List Monad
	List Comprehensions as a Monad

	The MonadPlus Type Class and guard
	The Writer Monad
	Some Monadic Functions: liftM, ap, join, filterM, foldM, mapM, sequence
	Functions as Monads
	The State Monad
	An Interpreter for a Simple Imperative Language

