Functors and Friends

Stephen A. Edwards

Columbia University

Fall 2021

Functors
Functor Laws

Applicative Functors
Pure and the <$> Operator
ZipList Applicative Functors
liftA2
sequenceA

Applicative Functor Laws
newtype

Monoids

Foldable

Functors: Types That Hold a Type in a Box

class Functor f where
fmap :: (a ->b) > fa->fb

fis a type constructor of kind = -> *. “A box of”

fmap g x means “apply g to every a in the box x to produce a box of b’s”

data Maybe a = Just a | Nothing data Either a b = Left a | Right b
instance Functor Maybe where instance Functor (Either a) where
fmap _ Nothing = Nothing fmap _ (Left x) = Left x
fmap g (Just x) = Just (g x) fmap g (Right y) = Right (g v)

data List a = Cons a (List a) | Nil

instance Functor List where
fmap g (Cons x xs) Cons (g x) (fmap g xs)
fmap _ Nil = Nil

IO as a Functor

Functor takes a type constructor of kind = -> *, which is the kind of /O

Prelude> :k IO
I0 :: * —> =

10 does behave like a kind of box:
query :: I0 String

query = do line <- getLine —— getLine returns a box :: |0 String
let res = line ++ "!" —- take line out of box from getLine
return res ——putresin an IO box

The definition of Functor 10 in the Prelude: (alternative syntax)

instance Functor IO where
fmap f action = do result <- action -—- take result from the box
return (f result) —- apply f; put it a box

Using fmap with 1/0 Actions

main = do line <- getLine
let revline = reverse line —— Tedious but correct
putStrLn revLine

main = do revLine <- fmap reverse getLine —— More direct

putStrLn revLine

Prelude> fmap (++"!") getLine
foo
Ilfoo! n

Functions are Functors

Prelude> :k (->)
(—>) 11 % > % —> % —— Like “*(+)," (=>) is a function on types

That is, the function type constructor -> takes two concrete types and
produces a third (a function). This is the same kind as Either

Prelude> :k ((->) Int)
((=>) Int) :: * —> =*

The ((->) Int) type constructor takes type a and produces functions that
tranform Ints to a’s. fmap will apply a function that transforms the a’s to b’s.

instance Functor ((->) a) where
fmap f g = \x —> f (g x) —— Wait, this is just function composition!

instance Functor ((->) a) where
fmap = (.) —— Much more succinct (Prelude definition)

Fmapping Functions: fmapfg=f.g

Prelude> :t fmap (*3) (+100)
fmap (*3) (+100) :: Num b == b -> b

Prelude> fmap (*3) (+100) 1
303

Prelude> (*3) ~fmap~ (+100) $ 1
303

Prelude> (*3) . (+100) $ 1
303

Prelude> fmap (show . (*3)) (+100) 1
ll303ll

Partially Applying fmap

Prelude> :t fmap
fmap :: Functor f => (a -=>b) > fa ->fb

Prelude> :t fmap (%3)
fmap (+3) :: (Functor f, Numb) => £ b > f b

“fmap (*3)" is a function that operates on functors of the Num type class
("functors over numbers”). The function (=3) has been lifted to functors

Prelude> :t fmap (replicate 3)
fmap (replicate 3) :: Functor f => f a -> f [a]

“fmap (replicate 3)" is a function over functors that generates “boxed lists”

Functor Laws

Applying the identity function does not change the functor
(“fmap does not change the box"):

fmap id = id

Applying fmap with two functions is like applying their composition
("applying functions to the box is like applying them in the box"):

fmap (f . g) = fmap £ . fmap g

fmap (\y -=> £ (g v)) x = fmap £ (fmap g x) —— Equivalent

data Maybe a = Just a | Nothing instance Functor Maybe where
fmap _ Nothing = Nothing

{— Does Maybe follow the laws? -} fmap £ (Just x) = Just (f x)

fmap id Nothing = Nothing —— from the definition of fmap

fmap id (Just x) = Just (id x) —— from the definition of fmap
= Just x —— from the definition of id

(fmap £ . fmap g) Nothing

fmap £ (fmap g Nothing) —— def of.

= fmap f Nothing —— def of fmap
= Nothing —— def of fmap
= fmap (f . g) Nothing —— def of fmap

(fmap £ . fmap g) (Just x)

fmap £ (fmap g (Just x))—— def of .

= fmap £ (Just (g x)) —— def of fmap
= Just (f (g x)) —— def of fmap
= Just ((f . g) x) —— def of .

fmap (f . g) (Just x) —-— defof fmap

My So-Called Functor

data CMaybe a = CNothing | CJust Int a
deriving Show
instance Functor CMaybe where —- Purported
fmap _ CNothing = CNothing
fmap f (CJust ¢ x) = CJust (c+l) (f x)

*Main> fmap id CNothing

CNothing —— OK: fmap id Nothing = id Nothing
sMain> fmap id (CJust 42 "Hello")
CJust 43 "Hello" —— FAIL: fmap id /= id because 43 /= 42

*Main> fmap ((+1) . (+1)) (CJust 42 100)

CJust 43 102

*Main> (fmap (+1) . fmap (+1)) (CJust 42 100)

CJust 44 102 —— FAIL: fmap (f. g) /= fmap f . fmap g because 43 /= 44

Multi-Argument Functions on Functors: Applicative Functors

Functions in Hakell are Curried:
1+2=((+)12=((+)1)2=@1A+)2-=23

What if we wanted to perform 1+2 in a Functor?

class Functor f where
fmap :: (a ->b) > fa->fb

fmap is “apply a normal function to a functor, producing a functor”
Say we want to add 1 to 2 in the [] Functor (lists):

[1] + [2] = (+) [1] [2] —— Infix to prefix
= (fmap (+) [1]) [2] -- fmap: apply function to functor
= [(1+)] [2] —— Now what?

We want to apply a Functor containing functions to another functor, e.g.,
something with the signature [a -> b] -> [a] -> [Db]

Applicative Functors: Applying Functions in a Functor
infixl 4 <>
class Functor f => Applicative f where
pure :: a -> f a —— Box something, e.g., a function
(<x>) :: f (a => b) -> f a -> f b —— Apply boxed function to a boxJ

instance Applicative Maybe where

pure = Just ——Putitin a “Just” box
Nothing <+> _ = Nothing —— No function to apply
Just f <> m = fmap f m —— Apply function-in-a-box f

Prelude> :t fmap (+) (Just 1)
fmap (+) (Just 1) :: Num a => Maybe (a -> a) —— Function-in—a—box

Prelude> fmap (+) (Just 1) <*> (Just 2)

Just 3

Prelude> fmap (+) Nothing <*> (Just 2)

Nothing —— Nothing is a buzzkiller

Pure and the <$> Operator
Prelude> pure (-) <*> Just 10 <*> Just 4

Just 6

Prelude> pure (10-) <*> Just 4

Just 6

Prelude> (-) ~fmap~ (Just 10) <*> Just 4
Just 6

<$> is simply an infix fmap meant to remind you of the $ operator
infixl 4 <$>

(<$>) :: Functor £ => (a > b) > fa > fb

f <$> x = fmap f x —— Or equivalently, f ~fmap~ x

So f<$>x<s>y<+>z islike fxyz buton applicative functorsx,y, z
Prelude> (+) <$> [1] <> [2]

[3]

Prelude> (,,) <$> Just "PFP" <*> Just "Rocks" <*> Just "Out"

Just ("PFP","Rocks","Out")

Maybe as an Applicative Functor

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap g (Just x) = Just (g x)

infixl 4 <x>
instance Applicative Maybe where
pure = Just

intix 4 <5 o
f <$> x = fmap f x
f <$> Just x <*> Just y
=(f£<$ Just x) <> Justy —-——a<$>b<*>c=(a<$>b)<*>c
= (fmap f (Just x)) <*> Just y —— Definition of <$>
= (Just (f x)) <*> Just y —— Definition of fmap Maybe
= fmap (f x) (Just y) —-— Definition of <*>

Just (f x v) —— Definition of fmap Maybe

Lists are Applicative Functors

instance Applicative [] where
pure x = [x] —— Pure makes singleton list
fs <> xs=[fx | f < fs, x <- xs] —— All combinations

<#> associates (evaluates) left-to-right, so the last list is iterated over first:

Prelude> [(++"!"), (++"?"), (++".")] <> ["Run", "GHC"]
["Run!","GHC!","Run?","GHC?","RUH.","GHC."]

Prelude> [x+y | x <- [100,200,300], v <- [1..3]]
[101,102,103,201,202,203,301,302,303]

Prelude> (+) <$> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]

Prelude> pure (+) <*> [100,200,300] <> [1..3] %

[101,102,103,201,202,203,301,302,303]

IO is an Applicative Functor

<%> enables I/O actions to be used more like functions

main = do
a <- getLine
b <- getLine
putStrLln $ a ++ b

instance Applicative I0 where
pure = return

a<*x»b=do f <- a

X <- b main :: I0 ()

return (f x) main = do
— ; a <- (++) <$> getLine <> getLine
Specialized to 10 actions, putStrLn a

(<%>) :: I0 (a -> b)
-> 10 a $ stack runhaskell af2.hs

> I0b One
Two

OneTwo

Function Application ((->) a) as an Applicative Functor
pure :: b > ((->) a) b
::b->a->b
(<x=>) 1t ((=>) a) (b >c) > ((=>) a) b > ((->) a) c
::(a->b ->c¢c) > ((a->b) > (a-—>c)

The “box” is “a function that takes an a and returns the type in the box”
<#>takesf :: a -> b -> candg :: a -> b and should produce a -> c.

Applying an argumentx :: atofandggivesg x :: bandf x :: b —> c.
This means applyingg xto f xgivesc,i.e, f x (g x) :: c.

instance Applicative ((->) a) where
pure x = _ > X —— a.k.a., const
f <> g=\x->f x (g x) —— Takes an a and uses f & g to produce a ¢

Prelude> :t \f g x > f x (g x)
\fgx >fx(gx):: (a->b->c) >(->b) >a->c

Functions as Applicative Functors
instance Applicative ((->) a) where f <x> g = \x -> f x (g x)
instance Functor ((->) a) where fmap = (.)
f <$> x = fmap f x
Prelude> :t (+) <$> (+3) <*> (*100)
(+) <$> (+3) <*> (*100) :: Num b => b -> b —— A function on numbers
Prelude> ((+) <$> (+3) <*> (%100)) 5
508 —— Apply 5 to +3, apply 5 to 100, and add the results

Single-argument functions (+3), (*100) are the boxes (arguments are “put
inside”), which are assembled with (+) into a single-argument function.

((+) <$> (+3) <*=> (*100)) 5
= (((+) . (#3)) <#> (*100)) 5 —— Definition of <$>
= (\x > ((+) . (+3)) x ((*100) x)) 5 —— Definition of <*>
((+) . (#3)) 5 ((*100) 5)) —- Apply5 tolambda expr.
((+) ((+3) 5)) (((*100) 5)) —— Definition of .
= (+) 8 500 —— Evaluate (+3) 5, (*100) 5

508 —— Evaluate (+) 8 500

Functions as Applicative Functors

Another example: (,,) is the “build a 3-tuple operator”
Prelude> :t (,,) <$> (+3) <*=> (*3) <*> (*100)
G, ,) <$> (+3) <#> (%3) <*> (*100) :: Num a => a —> (a, a, a)

Prelude> ((,,) <$> (+#3) <*> (*3) <*> (*100)) 2
(5,6,200)

The elements of the 3-tuple:

2+3=5
2*3=06
2 *100 =200

Each comes from applying 2 to the three functions.

“Generate a 3-tuple by applying the argument to (+3), (*3), and (*100)”

ZipList Applicative Functors

The usual implementation of Applicative Functors on lists generates all
possible combinations:

Prelude> [(+),(*)] <*> [1,2] <*> [10,100]
[11,101,12,102,10,100,20,200]

Control.Applicative provides an alternative approach with zip-like behavior:

newtype Ziplist a = ZipList { getZiplList :: [a] }
instance Applicative ZipList where
pure x = ZipList (repeat x) —-— Infinite list of X’s
ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)

> ZipList [(+),(*)] <*> ZipList [1,2] <*> ZipList [10,100]
Ziplist {getZipList = [11,200]} ——[1+10, 2 %« 100]

> pure (,,) <*> ZiplList [1,2] <*> ZipList [3,4] <*> ZipList [5,6]
ZipList {getZipList = [(1,3,5),(2,4,6)]}

liftA2: Lift a Two-Argument Function to an Applicative Functor

class Functor f => Applicative f where

pure :ra—>fa
(<¥>) ::f(a->b) >fa->1~fhb
(<x>) = 1liftA2 id —— Default: get function from 1st arg’s box

1iftA2 :: (a->b ->c¢) >fa->fb->fc
1liftA2 £ x = (<*>) (fmap f x) —— Default implementation

liftA2 takes a binary function and “lifts” it to work on boxed values, e.g.,
1liftA2 :: (a->b >c) > (fa->fb->fc)

Prelude Control.Applicative> 1iftA2 (:) (Just 3) (Just [4])
Just [3,4] —— Apply (;) inside the boxes, i.e., Just ((:) 3 [4])
instance Applicative ZipList where

pure x = ZiplList (repeat x)

1liftA2 f (ZipLlist xs) (ZipList ys) = ZipList (zipWith f xs ys)

Turning a list of boxes into a box containing a list

sequenceAl :: Applicative f => [f a] -> f [a] —— Prelude sequenceA
sequenceAl [] = pure []
sequenceAl (x:xs) (:) <$> x <*> sequenceAl xs

*Main> sequenceAl [Just 3, Just 2, Just 1]
Just [3,2,1]

Recall that f <$> Just x <*> Just y = Just (fx y)

sequenceAl [Just 3, Just 1]

= (:) <$> Just 3 <*> sequenceAl [Just 1]
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> sequenceAl [])
= (:) <$> Just 3 <*=> ((:) <$> Just 1 <*> pure [])
(:) <$> Just 3 <*> ((:) <$> Just 1 <+*> Just [])
= (:) <$> Just 3 <*> Just [1]

Just [3,1]

SequenceA Can Also Be Implemented With a Fold
import Control.Applicative (1iftA2)

sequenceA2 :: Applicative f => [f a] -> f [a] —— Prelude sequenceA
sequenceA2 = foldr (1liftA2 (:)) (pure [])

How do the types work out?
liftA2 :: App.f=>(a—-b —-c)->Ffa—-f b —-f c

() = a — [a] — [a]

Passing (:) to liftA2 makes b = [a] and c = [a], so

liftA2 (1) = App.f=> fa—f[a]l - f[a])
foldr :: (d —e —e) — e —[d] —e |
Passing liftA2 (:) to foldr makes d = f a and e = f [a], so

foldr (liftA2 (:)) : App.f= f [a] — [f a] — f [a] }
pure[] : App. f = f [a]

foldr (liftA2 (:)) (purel]) :: App.f=> [fa] - f [a]J

SequenceA in Action

sequenceA :: Applicative f => [f a] -> f [a]
sequenceA = foldr (1iftA2 (:)) (pure [])

"Take the items from a list of boxes to make a box with a list of items”

Prelude> sequenceA [Just 3, Just 2, Just 1]
Just [3,2,1]

Prelude> sequenceA [Just 3, Nothing, Just 1]
Nothing —— ""Nothing" nullifies the result

Prelude> :t sequenceA [(+3), (+2), (+1)]

sequenceA [(+3), (+2), (+1)] :: Num a => a -> [a] —- Produces a list
Prelude> sequenceA [(+3), (+2), (+1)] 10
[13,12,11] —— Apply the argument to each function

Prelude> sequenceA [[1,2,3],[10,20]]
[[1,10],[1,20],[2,101,[2,20],[3,10]1,[3,20]] —— fmap on lists

Applicative Functor Laws

pure f <*> x = fmap f x —— <*>: apply a boxed function
pure id <#> x = x —— Because fmap id = id
pure (.) <#> X <#> y <¥> z = X <#> (y <*> z) —— <*>is left-to-right
pure f <> pure x = pure (f x) —— Apply a boxed function

pure ($ y) <*> x —— ($y): “apply arg. y”

X <%> pure y

The newtype keyword: Build a New Type From an Existing Type

Say you want a version of an existing type only usable in certain contexts.
type makes an alias with no restrictions. newtype is a more efficient version of
data that only allows a single data constructor

newtype DegF
newtype DegC

DegF { getDegF :: Double }
DegC { getDegC :: Double }

fToC :: DegF -> DegC
fToC (DegF f) = DegC $ (£ - 32) =5/ 9

cToF :: DegC —> DegF
cToF (DegC c) = DegF $ (c 9 / 5) + 32

instance Show DegF where show (DegF f) show f ++ "F"

instance Show Deg(C where show (DegC c) show ¢ ++ "C"

DegF and DegC In Action

*Main> fToC (DegF 32)
0.0C
*Main> fToC (DegF 98.6)
37.0C
*Main> cToF (DegC 37)
98.6F
*Main> cToF 33
* No instance for (Num DegC) arising from the literal '33'
*Main> DegC 33 + DegC 32
No instance for (Num DegC) arising from a use of '+'
*Main> let t1l = DegC 33
*Main | t2 = DegC 10 in
*Main| getDegC tl1l + getDegC t2
43.0

Newtype vs. Data: Slightly Faster and Lazier
newtype DegF = DegF { getDegF :: Double }
data DegF = DegF { getDegF :: Double } —— Same syntax

A newtype may only have a single data constructor with a single field
Compiler treats a newtype as the encapsulated type, so it’s slightly faster
Pattern matching always succeeds for a newtype:

Prelude> data DT = DT Bool
Prelude> newtype NT = NT Bool

Prelude> helloDT (DT _)
Prelude> helloNT (NT _)

"hello"
"hello"

Prelude> helloDT undefined

"%x%% Exception: Prelude.undefined

Prelude> helloNT undefined

"hello" ——Just a Bool in NT's clothing

Data vs. Type vs. NewType

Keyword When to use

data

type

newtype

When you need a completely new algebraic type or record, e.g.,
data MyTree a = Node a (MyTree a) (MyTree a) | Leaf

When you want a concise name for an existing type and aren’t
trying to restrict its use, e.g., type String = [Char]

When you're trying to restrict the use of an existing type and were
otherwise going to write data MyType = MyType t

Monoids
Type classes present a common interface to types that behave similarly

A Monoid is a type with an associative binary operator and an identity value

E.g., * and 1 on numbers, ++ and [] on lists:

Prelude> 4 * 1 Prelude> "hello" ++ []

4 —-—1isthe identity on the right "hello" —- []isthe right identity
Prelude> 1 * 4 Prelude> [] ++ "hello"

4 —-1isthe identity on the left "hello" —- []is the left identity
Prelude> 2 « (3 = 4) Prelude> "a" ++ ("bc" ++ "de")
24 "abcde"

Prelude> (2 * 3) = 4 Prelude> ("a" ++ "bc") ++ "de"
24 —— x is associative "abcde" —— ++ is associative
Prelude> 2 * 3 Prelude> "a" ++ "b"

6 "ab"

Prelude> 3 * 2 Prelude> "b" ++ "a"

6 —— * happens to be commutative "ba" —— ++ is not commutative

The Monoid Type Class

class Monoid m where

mempty :: a —— The identity value

mappend :: m -> m -> m —— The associative binary operator
mconcat :: [m] -> m —— Apply the binary operator to a list
mconcat = foldr mappend mempty —- Default implementation

Lists are Monoids:
instance Monoid [a] where

mempty = []
mappend = (++)
Prelude> mempty :: [a]

[]

Prelude> "hello " “mappend™ "world!"

"hello world!"

Prelude> mconcat ["hello ","pfp ","world!"]
"hello pfp world!"

* 1 and +, 0 Can Each Make a Monoid
newtype lets us build distinct Monoids for each
In Data.Monoid,
newtype Product a = Product { getProduct :: a }

deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
mempty = Product 1

Product x “mappend” Product y = Product (x * vy)

newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
mempty = Sum O
Sum x “mappend” Sum y = Sum (X + y)

Product and Sum In Action

Prelude Data.Monoid> mempty :: Sum Int

Sum {getSum = 0}

Prelude Data.Monoid> mempty :: Product Int
Product {getProduct = 1}

Prelude Data.Monoid> Sum 3 “mappend” Sum 4

Sum {getSum = 7}

Prelude Data.Monoid> Product 3 “mappend™ Product 4
Product {getProduct = 12}

Prelude Data.Monoid> mconcat [Sum 1, Sum 10, Sum 100]

Sum {getSum = 111}

Prelude Data.Monoid> mconcat [Product 10, Product 3, Product 5]
Product {getProduct = 150}

The Any (||, False) and All (&&, True) Monoids

In Data.Monoid,

newtype Any = Any { getAny :: Bool }
deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid Any where
mempty = Any False
Any x “mappend” Any vy = Any (x || V)

newtype All = All { getAll :: Bool }
deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid All where
mempty = All True
All x “mappend” All y = All (x && vy)

Any and All

Prelude Data.Monoid>
Any {getAny = False}
Prelude Data.Monoid>
All {getAll = True}

Prelude Data.Monoid>
True
Prelude Data.Monoid>
False

Prelude Data.Monoid>
Any {getAny = True}

Prelude Data.Monoid>
All {getAll = False}

mempty :: Any

mempty :: All

getAny $ Any True “mappend™ Any False

getAll $ All True “mappend™ All False

mconcat [Any True, Any False, Any True]

mconcat [All True, All True, All False]

Yes, any and all are easier to use

Ordering as a Monoid
data Ordering = LT | EQ | GT

In Data.Monoid,

instance Monoid Ordering where

mempty = EQ

LT “mappend” _ = LT
EQ “mappend” y =Yy
GT “mappend” _ = GT

Application: an Icomp for strings ordered by length then alphabetically, e.g.,

lcomp :: String -> String -> Ordering
"b" “lcomp™ "aaaa" = LT —- b isshorter
"bbbbb" “lcomp> "a" = GT —- bbbbb is longer

"avenger" “lcomp> "avenged" = LT —- Same length:ris after d

lcomp

lcomp :: String -> String -> Ordering

lcomp x y = case length x ~compare™ length y of
LT —> LT
GT —> GT

EQ —> x “compare” y

A little too operational; mappend is exactly what we want

lcomp :: String -> String -> Ordering
lcomp x yv = (length x “~compare™ length y) “mappend”
(x “compare” vy)

Maybe the Monoid

instance Monoid a => Monoid (Maybe a) where
mempty = Nothing
Nothing “mappend™ m =m
m “mappend™ Nothing = m
Just ml “mappend” Just m2 = Just (ml “mappend™ m2)

Prelude> Nothing “mappend™ Just "pfp"

Just "pfp"
Prelude> Just "fun" “mappend™ Nothing
Just "fun"

Prelude> :m +Data.Monoid
Prelude Data.Monoid> Just (Sum 3) “mappend” Just (Sum 4)
Just (Sum {getSum = 7})

The Foldable Type Class

What | taught you:

foldr :: (a -=>b ->b) > b > [a] > b
foldr _ a [] = a
foldr f a (x:xs) = £ x (foldr £ a xs)

How it's actually defined (Data.Foldable):
foldr :: Foldable t => (a ->b ->b) > b ->ta->b

class Foldable t where
{-# MINIMAL foldMap | foldr #-}

foldr, foldr'
foldrli

foldl, foldl'
foldll

fold

foldMap
tolist

null

length

elem

maximum
minimum

sum

product

::(a->b->b) >b->ta->b
it (a—>a-—>a —>ta->a
it (b->a->b) >b->ta->b>b
i (a—>a->a) >ta->a
:: Monoid m => t m -> m —— with mappend
:: Monoid m=> (a ->m) > ta->m
:: t a > [a]

: t a -> Bool

:: t a > Int

:: Ega=>a->ta-> Bool

:: Ord a =>
:: 0Ord a
:: Num a
:: Num a

a —>

>
>
>

1l
&+ + + t
[V I R)
VoV
SV I DI D R o]

Instance of Foldable for [] is just the usual list functions

data Tree a = Node a (Tree a) (Tree a) | Nil deriving (Eq, Read)

instance Foldable Tree where

foldMap _ Nil = mempty
foldMap f (Node x 1 r) = foldMap f 1 “mappend”
f x “mappend”
foldMap f r
> foldl (+) 0 (fromList [5,3,1,2,4,6,7] :: Tree Int)
28 —— folding the tree
> getSum $ foldMap Sum $ fromlList [5,3,1,2,4,6,7]
28 —— The Sum Monoid's mappend is +
> getAny $ foldMap (\x -> Any $ x == 'w') $ fromList "brown"
True —— Any's mappend is ||
> getAny $ foldMap (Any . (=='w')) $ fromList "brown"
True —— More concise

> foldMap (\x -> [x]) $ fromList [5,3,1,2,4,6,7]
[1,2,3,4,5,6,7] —— List's mappend is ++

	Functors
	Functor Laws

	Applicative Functors
	Pure and the <$> Operator
	ZipList Applicative Functors
	liftA2
	sequenceA
	Applicative Functor Laws

	newtype
	Monoids
	Foldable

