
TiMRS
Jeff Kline
Faisal Rahman
Daniel Rindone
Eric Webb

Timers, Made Readable and
Simple

Software Development Tools
Languages Used

Code written in:
● C, LLVM, OCaml

Project Management
● Managed and organized events through Slack

● Code sharing through Github

Resources Utilized
● Linux Programming Interface, Ch. 23: Timers

● Brute force programming and cynical humor

Language Overview / Motivation

A language designed to be accessible through a clearly defined set
of parameters so that timers can be made by both experienced and
entry-level programmers alike.

Usability, Simplicity, Customization, Efficiency

● Imperative
● Statically scoped
● Monomorphic

Reflects an emulation of C-like syntax

Language Overview and Comparison
Where we started How it’s going

5 rounds:
5 min 30 secs
2 min then print “Done”
5 min then alert “STOP”
30 sec then 2 rounds: 10 sec

2 rounds of:
30 sec
15 sec

30 min
30 sec

main(){
int a;
string k;
a = 5000;
k = “Done”;
init_timer(1);
start_timer(a);
prints(k);

 timer_destroy(1);
}

TiMRS in a Slide Example

main(){
int a;
string k;
a = 500000;
k = “Done”;
init_timer(1);
start_timer(2000);
prints(k);

 timer_destroy(1);
}

Declaration before
assignment

String
support Built-in timer

support

Free the timer

System Architecture/Pipeline
Source File

Lexer

Parser

Uncompiled
Ocaml

LLVM

Executable

timer.c

Control Flow

Arithmetic Operators +, -, *, /, and () Standard operations for mathematical arithmetic

if, elif, else, while

Assignment Operator =
Assigns the variable on the right hand side to the
variable on the left

Comments /* */

Syntax Basics

Syntax Basics

Boolean Operators

Conditional Operators

!= Inequality

== Equality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

||
Example:
 a || b

&&
Example:
 b && a

!
Example:
 !b && a

Language Features

Data Types

Function Calling

Syntax:

/* function declaration */
int name(list of parameters)
{

statement;
}

/* function call */
name(list of parameters)

Example:

/* user-defined function
declaration */
int countdown(int x, string msg)
{

if (x <= 30)
return msg;

}

/* function call */
countdown(10, “done”)

int, float, string, bool, void

Syntax Basics

TiMRS-Specific Commands

init_timer() Create an instance of a timer

start_timer() Starts a timing event

timer_destroy() Frees the timer from memory

prints() String printing function

Additionally supports all MicroC functions

Timer Functions Example

main(){
int a;
string k;
a = 500000;
k = “Done”;
init_timer(1);
start_timer(2000);
prints(k);

 timer_destroy(1);
}

Variables introduced

Timer is
initialized Built-in timer

support

Timer is
freed

There are unique function calls
related to creating, running, and
clearing our timers.

Testing Process

Overview

Example

Testing a Timer
timer_init(1);
timer1 = start_timer(<microseconds>);
timer_destroy(1);

Example of a failed timer:
timer_init(1);
timer1 = start_timer(true);
timer_destroy(1);

● Similar to microc test suite
● Allows labeling and instantiation of a customizable timer

int

Testing Currently...
-n fail-return1...

OK

-n fail-return2...

OK

-n fail-string-assign1...

FAILED

 fail-string-assign1.err differs

-n fail-string-assign2...

FAILED

 fail-string-assign2.err differs

-n fail-string-assign3...

FAILED

 fail-string-assign3.err differs

-n fail-string-assign4...

FAILED

...Is
everything!
Start early!

TIME
Don’t try to add too
many features at
once, start small

and work up

Incremental
Don’t try to

accomplish the
impossible.

Be honest
with yourself

Be communicative
with teammates
about progress

Communicate

Takeaways/Lessons Learned

Project Demo

