TIMRS

Timers, Made Readable and
Simple

Jeff Kline
Faisal Rahman

Daniel Rindone
Eric Webb

Software Development Tools

Code written in:;
e C,LLVM, OCaml

Project Management

e Managed and organized events through Slack
e Code sharing through Github

e Linux Programming Interface, Ch. 23: Timers

e Brute force programming and cynical humor

Language Overview / Motivation

A language designed to be accessible through a clearly defined set
of parameters so that timers can be made by both experienced and
entry-level programmers alike.

Usability, Simplicity, Customization, Efficiency

e Imperative
e Statically scoped
e Monomorphic

Reflects an emulation of C-like syntax

Language Overview and Comparison

Where we started

-

5 rounds:
5 min 30 secs
2 min then print “Done”
5 min then alert “STOP”
30 sec then 2 rounds: 10 sec
2 rounds of:
30 sec
15 sec
30 min
30 sec

N

~

-

main () {
int a;
string k;
a = 5000;
k = “Done”;
init timer(1);
start_timer(a);
prints (k) ;
timer destroy(1l);

N

/

TiIMRS in a Slide Example
/ Declaration before \
assignment

main () {

int a;
string k;

String a = 500000;

k = “Done”;

support init_timer (1) Built-in timer

start_timer (2000) ;
prints (k) ; Support

timer destroy(1l);

N /

Free the timer

Source File

System Architecture/Pipeline

Lexer
J
N\
Parser
J
N\
Uncompiled
Ocaml
J
) (
LLVM < timer.c }
> .

Executable

Syntax Basics

Control Flow

Arithmetic Operators

Comments

if, elif, else, while

+, -, *, /, and ()

Standard operations for mathematical arithmetic

Assigns the variable on the right hand side to the
variable on the left

/* */

Syntax Basics

Example:
Il allb
Example:
Boolean Operators && b ssa
Example:
! 'b && a
1= Inequality
== Equality
-~ < Less than
Conditional Operators
> Greater than
<= Less than or equal to
>= Greater than or equal to

Language Features

Data Types int, float, string, bool, void
Syntax: Example:
/* function declaration */ /* user-defined function
int name (list of parameters) declaration */
{ int countdown (int x, string msqg)
statement; {
} if (x <= 30)

return msg;
/* function call */ }
name (1list of parameters)
/* function call */
countdown (10, “done”)

Syntax Basics

TiIMRS-Specific Commands

init timer()

Create an instance of a timer

start_timer()

Starts a timing event

timer destroy ()

Frees the timer from memory

prints ()

String printing function

Additionally supports all MicroC functions

Timer Functions Example

There are unique function calls . .
related to creating, running, and / Varlables mtrOdUCEd \

clearing our timers.

main () {
int a;
string k;
. . a = 500000;
Timer Is k = “Done”; . L
e e o e init_timer (1) ; BUllt'ln tlmer
initialized start timer (2000);
prints (k) ; support
timer destroy(1);

Timer is

SN /

Testing Process

e Similar to microc test suite
e Allows labeling and instantiation of a customizable timer

Overview

int
Testing a Timer
timer init(1l);
timerl = start timer (<microseconds>);

timer destroy(1l);

Example of a failed timer:
timer init(1l);
timerl = start timer (true);

timer destroy(l);

Testing Currently...

-n fail-returnl...

-n fail-return2...
OK

-n fail-string-assignl...

FAILED

fail-string-assignl.err differs
-n fail-string-assign2...
FAILED

fail-string-assign2.err differs
-n fail-string-assign3...
FAILED

fail-string-assign3.err differs
-n fail-string-assigné...

FATILED

Takeaways/Lessons Learned

© © © @

...Is
everything!
Start early!

7~

Incremental

Don't try to add too
many features at
once, start small

and work up

Be honest
with yourself

Don'ttry to
accomplish the
impossible.

'

Communicate

Be communicative
with teammates
about progress

N

Project Demo

