
SCIC
Scientific Calculation Language

Eleven Li, Yucen Sun, Zhengyuan Dong

CONTENTS
01 Overview

02Compiler
Architecture

03
04

Features

Q&A

Demo

05

1St

Demo

Overview

Compiler Architecture

Features

Teamwork

Motivation

● Manual unit conversion in the code can be
cumbersome and error-prone

● Problem in the history:
Loss of Mars Climate Orbiter - A catastrophic
industrial accident due to unit problems

● Our goal: a general purpose language with
user-friendly unit features

01

02

04

03 Types
int, float, boolean, string, void
int array, float array

C-like Syntax

Syntactically mimic C
with new data type and unit syntax

Static
Statically typed
Statically scoped
Data type and unit explicitly
specified

Unit
Supports variables with units,
Build-in base and user-defined units,
automatic unit conversion,
supported units: m, cm, s, kg, m/s …

Language Overview

2nd

Demo

Overview

Compiler Architecture

Features

Teamwork

source
code scanner parser semantic

check

Compiler Architecture

*Unit
check

Code
generator

 LLVM IR binary
executableC lib

AST

SAST

SAST

SAST

*An additional layer
dedicated to check units
for variables, exprs and
functions;
modify sexprs to do unit
conversion, no change in
type

Focus on the normal
semantic check like type
check and expr
validation. Walk over
AST and generate SAST.

3rd
Q&A

Demo

Overview

Compiler Architecture

Features

Teamwork

Syntax & Grammer

A SCIC program is
composed of:

- Unit declarations
- Global variable

declarations
- Function declarations

Declared units are global

Inside function declarations,
we can define local variables
(must initialize).

Static type and static unit:

Must specify legal type and
unit (or no-unit) upon
variable/function declaration.

Only float and float array has
unit, other types (bool, string,
etc) no-unit.

Support float array with
static unit：

Every element in one
array has the same unit.

Support for, while, if-else
stmts.

Flexible local variables

Key Features

|'{km} = 0.001 '{m}|;

float '{cm} x = 30.0;

Unit System

Local Declare-and-assign

Unit
System

Local
DAssign

Array
Support Array Support:

Support array and
operations

Unit System: Unit declaration

Base units: S.I. Unit User defined unit is a scaling of an existing unit.
The scale is a float number.

Derived unit (a simple expr of existing units)
can be used directly.

The conversion to target
unit is automatic!
(Here prints 0.998)Non-base units:

centimeter: cm
Others leave to the users

Keep a Set for base_units and a Map for units. Manage
the set and map in unitcheck.ml

Unit System: Unit declaration

● Only float and float array have units. Unit
default to none for other types (bool, int,
string …). If a float is defined without ’{unit},
the compiler interpret it as no-unit.

● Same rule applies to function formals and
function return value’s unit.

● All element in a float array have the same
unit. If an element is accessed, the element
keeps its unit.

Implementation:

Auto-conversion between exprs:

Unit propagation

When unichecking exprs, recursively
- check and determines the unit for

current expr
- calculate the scale (a float number)
- apply the scale by wrapping the expr

with a multiplication expr
--

Unit System: Unit conversion

Unit System: Unit conversion

Some of the rules in unicheck:
eu -> u1 + u2:

if u1 = no-unit,
follow u2;

else if both have units,
eu = u1; scale u2;
if u2 cannot convert to u1,
raise error

eu -> u1 *u2:
if u1 or u2 is no-unit:

follow the other;
else:

eu = u1 * u2

At assign, function arguments
and function return, the
conversion can be seen explicitly.

Unitcheck.ml layer takes in SAST, generate Unit-checked
SAST, put into codegen

Unit Checker Input & Ouput
unit

data type sx

Unit Checker Data Structures

unit conversion table

basic units set

add user defined unit and
conversion rule to unit
conversion table

Unit System: derived units e.g. m*g/s

Algorithm for Scaling derived units:
1. Decompose units by regular expression
2. Loop and reduce non-basic units like km, cm, ms to basic units like m, s for

both sides of assignment
3. Get a map counter of base units, e.g. m*kg /s*s = {“m”: 1, “kg”: 1}, {“s”: 2}
4. Compare counter map of both sides to check if assignment is valid
5. Get conversion rate from two sides

Local variable declare and assign

Local variables inside function declarations:
● Allow Dassign anywhere in the function
● Declare and assign the variable at the same time
● Add to flexibility of the language

Implementation:
Treat declare-and-assign as a stmt;
Modify expr and stmt by adding a table so that
the state can be memorized

● Support array initialization, element access, and element modification. Array
syntax is similar to C array.

● Support for, while, as well as if-else stmts to better manipulate the array.
● Float array also support unit. Every element in the same array has the same unit.

At array initialization, every expr on the right side is assumed no-unit.

An example of array manipulation w units in a simple physics experiment

Array Manipulation

4th

Overview

Compiler Architecture

Features
Demo

Overview

Compiler Architecture

Features

Teamwork

Demo: a comprehensive example

5th
Demo

Overview

Compiler Architecture

Features

Teamwork

Zhengyuan Dong: Project Manager / Tester

Yucen Sun: Language Guru / Tester

Eleven Li: Compiler Architect / Tester

Teamwork

Future work
● Support for more complicated units (user defined mapping to derived units)
● Equation-like functions.

THANKS
Eleven Li, Yucen Sun, Zhengyuan Dong

