
RJEC: Really Just
Elementary Concurrency

By: Riya Chakraborty, Justin Chen, Yuanyuting
(Elaine) Wang, Caroline Hoang

Introduction

Who is RJEC?

● Motivation: a simple imperative language with strong concurrency

primitives

○ Go-like: nice, consistent, concise, productive syntax

○ CSP-style concurrency abstractions that allow for general

purpose concurrent programming

● Intended audience & use cases
○ General purpose with a focus on concurrent programming

○ With an eye to distributed applications (though we do not

support RPC)

Architectural Design

Language
Features

Syntax: RJEC in one slide

● Go-like

● Pass-by-value semantics for basic types and structs

func foo (i int, c []chan int) int {
c[0] <- i;
b := struct bar {

a : <- c[1];
};
return i + 1;

}

func main() {
c := []{make(chan int), make(chan int)};
yeet foo(4, c);
i := <- c[0];
c[1] <- 5;

}

compile-time type deduction

arrays

yeetroutines
send and receive from
channels

structs

Variable Declaration and Type Deduction
struct my_struct {
 a int;
 b char;
 c bool;
}

func foo(x int, y char) struct my_struct {
 i := struct my_struct {
 a : x,
 b : y
 };

 return i;
}

func main() {
 var w, z bool;
 w, z = true, false;
 var x, y int = 42, 30;

 t, k, l := foo(1, 'r'), foo(2, 'j'), 3;
 a, b, c := t.a, t.b, t.c;
}

statically and strongly typed

● := init

○ directly initialize to RHS

● = Long-form

○ declare, then initialize

○ var keyword on LHS

● One line, multi-var

○ same type!

● No casting

● No implicit type conversion

● ...or else, compiler error

Arrays and Structs
struct foo {
 x int;
 y bool;
 z char;
}
func main () {
 n := 10;
 var x, y [n]int;
 for i := 0; i < n; i = i + 1 {
 printi(x[i]);
 }
 z := []int{5, 3, 2};
 str := "rjec";
 prints(str);

 var i struct foo;
 i = struct foo {
 x : 1,
 y : true,
 z : 'a'
 };

 printi(i.x);
 printb(i.y);
 printc(i.z);
}

● Arrays

○ Mutable; fixed but var length

○ Array type defined by element type

○ Strings = null-terminated char array

○ No nested arrays

● Structs

○ Globally defined

○ Members stored and assigned by value

○ Passed by value in functions

○ Members of basic type

Yeetroutines

● yeet: starts a concurrent thread executing the function call

● Uses coroutines from Libmill library by Martin Sustrik

● Supports functions with any number of formals!

○ RJEC function formals are implemented as a single struct of

formals in LLVM to allow for this

yeet foo(a1, b1, c1, d1);
yeet foo(a2, b2, c2, d2);
yeet bar();

Channels

● Use make() to create (un)buffered channels, and close() when done

using the channel

● Channels block when full until a receiver appears

● Pass data between concurrent processes through channels

“Don't communicate by sharing memory, share memory by communicating.”
-Rob Pike

Image courtesy of Soham Kamani

Select: Concurrent Control Flow

● Blocks until able to send or

receive from any of the specified

channels

● Reverse engineered from choose

macro in Libmill library to allow

for function call

○ Implemented as an array of

select clause structs which

are passed into C function

● Uses LLVM switch instruction

func foo(ch1 chan char, ch2 chan int, quit chan bool) {
 for {
 select {
 case ch1 <- 'a':
 case val2 := <- ch2:
 printi(val2);
 case q := <- quit:

if q { return; }
 }
 }
}
func main() {
 ch1, ch2 := make(chan char, 2), make(chan int);
 quit := make(chan bool);
 yeet foo(ch1, ch2, quit);
 for i := 0; i < 5; i = i + 1 {
 printc(<-ch1);
 ch2 <- i;
 }
 quit <- true;
}

So where do we go from here?

● Multiple return values

○ Have support in grammar, can implement similarly to

how our formals are implemented

● Lambdas and closures, higher-order functions

○ Could enable built-in map, filter, reduce functions

● RPC support

○ To support distributed programming features

Acknowledgements

● Professor Edwards!

● Compilers referenced: MicroC, Shoo, Harmonica, Go

● LRMs referenced: C, Go

● Libraries used: Libmill (by Martin Sustrik), POSIX

Demonstration

Simple Producer-Consumer Problem

● Classic concurrent programming problem

● Use channels to synchronize sending and receiving

Mutex Implementation

● Use a channel with buffer size of 1

● Use defer keyword to structure unlocking of mutex at function

return

Random Number Generation

● Use a linear congruential generator to generate 1,000,000 random

integers

● Times the amount of time taken

MapReduce

● Concurrent algorithm by Google, inspired by functional

programming, intended for distributed applications

● Map workers take different parts of the data and process them into

categories

● Reduce workers take each category and operate on them

● Demo: primality test

Image courtesy of Berkeley EECS

